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Abstract—Quantum pulse serves as the machine language of
superconducting quantum devices, which needs to be synthe-
sized and calibrated for precise control of quantum operations.
However, existing pulse control systems suffer from the dilemma
between long synthesis latency and inaccuracy of quantum
control systems. compute-in-CPU synthesis frameworks, like IBM
Qiskit Pulse, involve massive redundant computation during
pulse calculation, suffering from a high computational cost
when handling large-scale circuits. On the other hand, field-
programmable gate array (FPGA)-based synthesis frameworks,
like QuMA, faces inaccurate pulse control problem. In this
article, we propose both compute-in-CPU and all-in-FPGA
solutions to collaboratively solve the latency and inaccuracy
problem. First, we propose QPulseLib, a novel compute-in-
CPU library with reusable pulses that can directly provide
the pulse of a circuit pattern. To establish this library, we
transform the circuit and apply convolutional operators to extract
reusable patterns and precalculate their resultant pulses. Then,
we develop a matching algorithm to identify such patterns shared
by the target circuit. Experiments show that QPulseLib achieves
158.46x and 16.03x speedup for pulse calculation, compared
to Qiskit Pulse and AccQOC. Moreover, we extend the design
as a fast and precise all-in-FPGA pulse control approach using
near-quantum cache design, SmartQCache. To be specific, we
employ a two-level cache to hold reusable pulses of frequently-
used circuit patterns. Such a design enables pulse prefetching in
near-quantum peripherals, dramatically reducing the end-to-end
synthesis latency. To achieve precise pulse control, SmartQCache
incorporates duration optimization and pulse sequence calibra-
tion to mitigate the execution errors from imperfect hardware,
crosstalk, and time shift. Experimental results demonstrate that
SmartQCache achieves 294.37x and 145.43x speedup in pulse
synthesis compared to Qiskit Pulse and AccQOC. It also reduces
the pulse inaccuracy by 1.27x compared to QuMA.

Index Terms—Field-programmable gate array (FPGA),
presynthesis, pulse generation, quantum computing.
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I. INTRODUCTION

UANTUM computing attracts wide attention for its

potential acceleration in dealing with tough computation
challenges, such as molecular simulation [4], many-body
physics [5], [6], and cryptography [7]. For superconducting
quantum devices, quantum pulses, generated from quantum
circuits, are used to describe all kinds of quantum operations
at the hardware level [1]. The pulse control system plays an
important role in high-performance quantum computing. As
the superconducting qubits are very fragile and sensitive to
external environmental disturbances [8], the synthesis latency
and accuracy of pulse sequences directly affect the efficiency
of quantum program execution [9].

Typical quantum pulse control system, such as Google
Sycamore [10], employs the architecture of host CPU and dis-
tributed field-programmable gate arrays (FPGAs) to conduct
discrete pulse synthesis and pulse execution, respectively, as
illustrated in Fig. 1(a). To be specific, the host is responsible
for pulse calculation and centralized pulse calibration. The
distributed FPGAs connected with digital-analog converter
(DAC) boards focus on the timing control of analog pulses for
the operation of quantum devices. Alternatively, QuUMA [2]
and QuAPE [11] present instruction-based quantum control
microarchitecture that applies pulse jump tables combined
with gate pulse calibration on distributed FPGAs to achieve
complex analog pulse control.

Generally, the pulse calculation process suffers from a
high latency cost, especially for large-scale quantum cir-
cuits on compute-in-CPU systems, due to the overwhelming
computational complexity of calculating the parameters of
pulses. For example, it takes 2190.67 s to generate the pulse
sequence for a 300-qubit quantum multiplier circuit using
Qiskit Pulse [1], which involves 191 903 single-qubit gates and
121 095 two-qubit gates. Fig. 1(b) provides the breakdown of
the synthesis latency on the circuits of hamiltonian simulation
(HS) [12] and QKNN [13], suggesting that the most time is
spent on the computation of pulses for quantum gates. Such
time-consuming synthesis fundamentally results from gate-
by-gate pulse calculation, which exhibits massive redundant
computation that repeatedly calculates the pulse for the same
circuit pattern. Taking the 300-qubit quantum multiplier circuit
as an example, we observe that 65% computation of Qiskit
Pulse is used for the same circuit pattern.

Fig. 1(c) summarizes the features of different pulse con-
trol systems, showing that existing systems suffer from the
dilemma between synthesis latency and execution accuracy.
Although the compute-in-CPU system exhibits high execution
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Fig. 1. Dilemma between synthesis latency and accuracy of superconducting
quantum control system. (a) Existing pulse control system. (b) Time break-
down for circuit synthesis for HS and QKNN. (c¢) Comparison of 3 quantum
pulse control system architectures.

accuracy by collecting and calibrating pulse sequences, it
faces long synthesis latency due to limited parallelism and
bandwidth. For example, the host CPU takes around 8.3 s to
generate a sequence of a 15-qubit quantum Fourier transform
(QFT) circuit using Qiskit Pulse. On the other hand, the exist-
ing all-in-FPGA architecture design fails to provide accurate
pulse sequences because of the coarse-grained optimization
of complex pulses. For example, QuMA only adopts single
gate pulse calibration, not the entire sequence, without the
optimization for reducing hardware defects and crosstalk in
neighboring qubits and couplers. When executing a 10-qubit
GHZ circuit, the state fidelity reaches 69.3%.

In this article, we propose QPulseLib, a compute-in-CPU
pulse library that consists of reusable patterns to reduce the
overall synthesis latency for pulse calculation. To establish
this library, we first parameterize the circuit into a matrix
representation that records the gate position and the gate type
in each element. Then, a convolutional operator is applied
to this matrix, which extracts the features of a subcircuit
block into a single value. By setting an elaborate convolutional
kernel, the blocks that share the same value indicate the same
circuit feature, identified as the reusable pattern. The library is
built upon the pulses that are precalculated from the reusable
patterns of various circuit benchmarks. For a target circuit, we
develop a greedy-based algorithm to match the patterns in the
pulse library. In other words, we can directly obtain the pulse
of the matched pattern from QPulseLib without calculating the
pulse gate by gate.

In addition, we extend the method as an efficient fast,
and precise all-in-FPGA pulse control system, SmartQCache.
The key idea is near-quantum computing that elaborates pulse
sequences on an embedded cache, which can not only shrink
the overall latency but also achieve high pulse accuracy.
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Concretely, SmartQCache features a two-level quantum cache
to house reusable pulse segments and accelerate pulse syn-
thesis by pulse prefetching. The L1 cache is dynamically
updated depending on the reuse frequency of pulse segments.
While the L2 cache is static, housing pregenerated pulses
of multiple circuit blocks. SmartQCache adopts gate list
representation and an encoding method to fetch the matching
pulse segments from the quantum cache. After obtaining the
generated sequence from the two-level cache, we fine-tune the
time interval between pulses for optimal timing control. To
avoid redundant computational costs, we propose a calibration-
in-cache scheme that utilizes partially calibrated pulses of XY
channels in the cache. Besides, the cache is integrated with
crosstalk calibration by adding compensation sequences. As a
result, as shown in Fig. 1(c), SmartQCache is able to balance
both pulse synthesis latency and pulse accuracy.

A preliminary version of this article will appear in ICCAD
2023 [14], we proposed to accelerate pulse calculation with
reusable patterns. In this article, we extend previous work with
near-quantum cache design, serving as a fast and precise all-
in-FPGA quantum pulse control system. To be specific, we
employ a two-level cache to hold reusable patterns for pulse
prefetching. We also incorporate duration optimization and
pulse sequence calibration to mitigate execution errors. Finally,
we apply our cache design to real-world quantum hardware,
balancing the tradeoff between synthesis latency and pulse
accuracy. The contributions of this article are summarized as
follows.

1) We propose QPulseLib to reduce redundant calculations,
which provides significant compute-in-CPU acceleration
in the pulse calculation, compared to the current state-
of-the-art method [3].

2) We propose a novel pulse library that covers the reusable
patterns derived from various circuit benchmarks, which
leverages a convolution-based method to identify the
subcircuit that is reused by multiple circuit benchmarks.

3) We propose SmartQCache, a novel pulse control archi-
tecture with a near-quantum cache that provides speedup
in pulse synthesis meanwhile keeping high accuracy.

4) We propose a complete pulse calibration method to
reduce the dominant error of imperfect hardware and
crosstalk. We also develop a precalculated distortion
method for pulses in XY channels, further utilizing
cached data to reduce redundant calculations.

The evaluation results demonstrate that compared to Qiskit
Pulse [1] and AccQOC [3], QPulseLib achieves 158.46x and
16.03x speedup for pulse calculation latency. In addition,
compared to Qiskit Pulse [1] and AccQOC [3], SmartQCache
achieves 294.37x and 145.43x speedup in pulse calculation
synthesis. Meanwhile, SmartQCache achieves over 1.27x
pulse accuracy improvement compared to QuMA [2], serving
as a fast and precise pulse control system.

II. BACKGROUND
A. Quantum Pulse Control System

Quantum pulse is the hardware-level representation of quan-
tum circuits to control the state evolution of superconducting
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qubits [15]. Pulses offer a time-evolving path in Hilbert space
to guide state changing for qubits on each time step [1].
Generally, the pulse control system consists of pulse synthesis
and pulse execution. The pulse synthesis unit conducts discrete
pulse calculation and pulse optimization according to quantum
hardware device settings. The pulse execution unit performs
precise timing control following a chronological schedule and
produces analog signals to control the quantum chips.

The pulse control system is expected to produce accurate
discrete pulses in a low synthesis latency, which requires
adopting a reasonable architecture to perform pulse synthesis
and execution. Existing quantum pulse control systems include
two types of architectures. The architecture of compute-in-
CPU system assigns pulse synthesis workload to the host and
employs on-board FPGAs to conduct pulse execution [10].
The architecture of all-in-FPGA system employs an FPGA
to perform pulse synthesis and precise timing control with
DACs [2].

B. Quantum Pulse Synthesis

The pulse synthesis includes 4 steps to generate a pulse
sequence with high accuracy, including pulse calculation,
pulse duration optimization, pulse calibration, and timing
optimization.

Pulse Calculation: The pulses of gates in the quantum
circuit are calculated and separated into five types of channels,
XY I-Q channels, the Z channel, the readout channel, and the
Z channel of couplers. The pulse sequence within each channel
consists of a series of gate pulses arranged on fixed-time
steps dt, depending on the sampling frequency of DAC. Gate
pulses are calculated through basic pulses, such as Gaussian
and sinusoidal pulses. These basic pulses undergo overlaying,
stretching, and mixing to form the eventual gate pulses. For
example, the description of an RX gate pulse at each time step
t; 18

S[i] = Amp X hpix (Gaussian(f, o) (t;)) (1)

where the f and o indicates the frequency and standard
deviation of Gaussian pulse, h,;; means differential mixing
function, and Amp is the amplitude of the pulse [1].

Generally, control pulses for superconducting quantum
devices are basically generated and scheduled following the
timeline of the circuit. For each gate, the related functions
are called to obtain its pulses, which are then concatenated
in chronological order [1], as shown in Fig. 2(a). However,
with the help of QPulseLib illustrated in Fig. 2(c), pulse can
be retrieved and concatenated with the pregenerated pulses
from the pulse library after circuit matching, as illustrated
in Fig. 2(b). Finally, many individual pulse segments are
scheduled in time and concatenated together to form the final
sequence.

Pulse Duration Optimization: Different physical imple-
mentations of operations for XY and Z channels in
superconducting quantum hardware lead to redundant intervals
between adjacent RX gate execution and CZ gate execution.
On the other hand, due to the existence of decoherence errors,
reducing the duration of pulse sequences can directly enhance
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Fig. 2. (a) Pulse generated by time schedule. Pulses are calculated following
time schedule. (b) Pulse generated by QPulseLib. Pulse sequence is generated
using pregenerated pulses after circuit matching. (c) QPulseLib.

the precision of quantum program execution. To this end,
pulse duration optimization indicates adjusting the execution
intervals among different channels with quantum optimal
control (QOC) [16], [17], benefiting precise pulse control.

Pulse Calibration: The ideal pulse sequence for real-
world pulse control demands accurate pulse shape [9], [18],
which requires overcoming crosstalk and pulse distortion:
1) crosstalk arises from neighboring flux leakage from other
qubits and couplers. The proportion of flux leakage within
each channel can be determined through routine calibration
steps and 2) pulse distortion arises due to nonlinear response,
wire noise, or unwanted coupling effects. To describe the
distortion, the transfer function of wires and analog devices
can be modeled as

o | iot )

@) = +El~|—iwr &

where € represents the fraction of amplitude of distortion and

T is a characteristic time-scale. The noise often occurs as

amplitude or phase changes in the flux-bias line, requiring

frequency domain compensation and amplitude compensation

calculated from the response data of hardware. To this end,

pulse compensation of crosstalk and distortion should be added
to correct imperfect pulse sequences.

Timing Optimization: Executing quantum pulses on each
qubit following chronological order requires pulse sequences
of all channels to be orthogonal and arrive at the quantum
chip simultaneously. Time shift arises from inaccurate arrival
time when transmitting pulse sequence to the target quantum
device through wires and analog devices. To overcome the
timing inaccuracy, it needs to add accurate time compensation
for each DAC channel to conduct precise analog timing
control.

III. QPULSELIB OVERVIEW

The insight of designing QPulseLib lies in the fact that
although pulse calculation for executing quantum programs
on hardware is inevitable, pulses can be reused through
the pulse library. The workflow of QPulseLib is shown in
Fig. 3. Fig. 3(a) illustrates the initial step of constructing
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Fig. 3. Overview of QPulseLib, containing (a) construction of QPulseLib,
and (b) pattern matching and pulse calculation.

the QPulseLib with a set of small-scale quantum circuits,
such as the ISING model [19], QKNN model [13], and
variational quantum classifier (VQC) model [20]. For instance,
the ISING-3q indicates a quantum circuit of ISING model
with 3 qubits. The construction of the QPulseLib will be
presented in Section V-A. After circuit transformation, the
quantum circuit is represented as a circuit matrix for circuit
matching, which will be described in Section IV-A. The library
consists of frequent reusable subcircuits extracted from these
circuits and their corresponding pulses.

QPulseLib leverages a pulse library to reuse pulses and
minimize synthesis latency for large-scale circuits, even those
comprising over a hundred qubits sharing patterns with the
library. Specifically, the process involves initiating an empty
pulse sequence, and subsequently collecting the pulses with
matched patterns into the sequence, as detailed in Section V-B.
Fig. 3(b) illustrates the initial step of transforming the target
circuit into a circuit matrix (Section IV-A), where each
submatrix captures the information about adjacent gates in the
circuit, as explained in Section IV-B. QPulseLib then applies
convolutional operators to the circuit matrix and compares
the results to the pattern in the pulse library, introduced in
Section V-A. For the matched pattern, the resultant pulse is
concatenated to the pulse sequence. Through the complete
matching of the circuit matrix, QPulseLib finally generates a
pulse sequence for the entire circuit.

IV. EXTRACTING CIRCUIT FEATURES
A. Transforming Circuit to Matrix
Each element of the circuit matrix represents one gate,
which stores information about its operation and the parame-

ters of the gate. For a circuit with N qubits and M layers, the
matrix size is N x M. For example, each element e, , in the
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nth row and mth column of the matrix corresponds to a gate
that operates on qubit timeline g, in the mth layer. Note that
we only consider three basis gates after circuit transpilation:
1) single-qubit gate RX; 2) single-qubit gate RY; and 3) two-
qubit gate CZ. Specifically, there are three cases for the matrix
assignment.

1) If there is a single-qubit gate (RX, RY), its value is
expressed as a complex indicating the gate types and the
rotation of the gate. As current superconducting quantum
hardware does not implement z-axis rotation [21], we
adopt a complex value to record the gate rotations in
the x-axis (RX gate) or y-axis (RY gate), using the real
value or imaginary value. For example, the value of an
RY gate, with a rotation angle of w /4, is m/4i.

2) As there is only one type of two-qubit gate (CZ), its
value records the position of the operated qubits. For
example, for a two-qubit gate (CZ) in layer k, with the
operated qubits on the nth and n” timeline, its value is
expressed as B x (n—n') and B x (n—n')i. B x (n—n)
is the value of the control qubit, while 8 x (n — n)i is
the value of the target qubit. 8 is a constant determined
by the voltage bias of CZ gates.

3) For the element with no gate operation or just an identity
gate (a wait cycle for a single-qubit gate), its value is
set to 0.

In a word, the position of gates is encoded as the index of
elements in the matrix. The parameter of gates is encoded as
the value. That is to say, a block from the circuit corresponds
to a submatrix, as shown in Fig. 4. This encoding scheme
ensures to thorough transformation of the entire circuit into a
quantitative manner.

B. Extraction Using Convolutional Operator

To accelerate the calculation of pulses, our goal is to identify
the reusable blocks in the matrix representation. Therefore,
we propose to utilize a convolution kernel, which acts like
a sliding window in the circuits and performs dot-product in
the window. For a kernel K, with size r x s, the sliding
window includes r qubits in s layers. The convolution result
is denoted as conv_rst. The kernel is designed to ensure that
the submatrix containing the same elements always produces
the same convolution output. The same conv_rst indicates the
same submatrix occurs in the circuit. If we observe a conv_rst
that matches an entry in the library, we then conduct a
comparison between the matched pattern in the library and the
block in the target circuit. Once the comparison results are
also consistent, we can leverage the precalculated pulse in the
library. For example, the submatrix in the red box in Step I
of Fig. 4, is first applied with a kernel of 2 x 4, obtaining the
conv_rst of 7+ mi. Next, we find the same conv_rst with a
matched pattern in the library. Last, we fetch the pulse under
this pattern. Similarly, in step 2 of Fig. 4, the submatrix at
the top-right of the input circuit, highlighted in the blue box,
leads to the result of 10 4 i, matching a pattern in the pulse
library. After conducting the convolution operation for the rest
parts in the matrix, we can generate the final pulse sequence
for the entire circuit.
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Fig. 4. Two-step process to conduct circuit matching with QPulseLib through convolution. In this example, we set 8 to 10.

TABLE I
QUANTUM BENCHMARKS APPLIED IN OUR EXPERIMENTS

Algorithm | Description Qubits | #1q | #2q
QFT Quantum Fourier Transformation [22] 15 499 | 231
GHZ Preparing Greenberger—Horne—Zeilinger State [23] |15 29 |14
QFT_IN |Inverse Quantum Fourier Transformation [24] 15 509 | 246
BV Bernstein-Varzirani Algorithm [25] 15 11 |4
DJ Deutsche-Jozsa Algorithm [26] 15 23 |14
HS Hamiltonian Simulation [12] 15 42 128
ISING Linear Ising Model [19] 15 46 |28
QKNN Quantum K -nearest Neighbors Algorithm [13] 15 85 |56
QSVM Quantum Support Vector Machine [27] 15 63 |56
QAOA Quantum Approximate Optimization Algorithm [28] |15 144 | 66
vQC Variational Quantum Classifier [20] 15 184 (448
QEC Quantum Error Correction Code [29] 15 33 |18
MUL Quantum Multiplier [30] 15 372|242
W-STATE | Preparing Quantum W_State [31] 15 51 |28
SIMON Quantum Simon Algorithm [32] 20 48 |17

Once convolution is applied to each submatrix in the circuit,
we can reformulate the input circuit as a collection of multiple
convolutional results. The size of the convolution kernel
determines the size of each submatrix. Aiming to precisely
extract more underlying patterns, we try various kernels with
different sizes. Considering that a larger kernel size potentially
brings higher speedup but requires more computation time,
we empirically choose the kernel with sizes of 3 x 3,4 x 2,
2 x4,3 x2,2x3,2x 2,1 x 2. To be specific, when
performing convolution, we employ kernels in the order of
their kernel size, where a small kernel allows a more fine-
grained matching. We do not apply any larger kernels due
to the low matching rate, which will reduce the efficiency of
pulse calculation.

Kernel values are assigned with the purpose of distinguish-
ing different patterns that feature different convolution results.
This ensures that the same pattern consistently shares the
same value, while different patterns produce distinct results.
To enable this, kernels are initially assigned random values
ranging from 1 to 10. Then, their values are optimized using
genetic algorithm (GA) [33] with a dataset of 15 benchmarks
ranging from 6 to 10 qubits, as listed in Table I. In this table,
#1q refers to the number of single-qubit gates, and #2q is for
two-qubit gates. We first generate a set of random values for
each kernel as candidates. GA algorithm is then applied to
conduct a stochastic search, which iteratively adjusts the value
and evaluates the candidate kernel. In each iteration, we update
the kernel values through a combination of random selection
and modifications, using the crossover and mutation steps in
the GA algorithm. Once it exceeds the maximum number of
iterations or there are no further updates within 3 iterations,
the search stops. According to our test, such a constraint is
enough to distinguish the patterns in the dataset circuit.

Different from the prior approach AccQOC [3] that relies
on frequent subgraph extraction, we employ convolutional
operators to find reusable submatrices with pattern matching,
which is a widely-used technique for identifying identical
adjacent submatrices within a matrix [34]. Both methods
exhibit a time complexity of O(n?) determined by the number
of circuit gates. While, the matrix multiplication involved
in convolution can be accelerated using graphics processing
units (GPUs) [35], thereby enhancing the efficiency of pulse
calculation.

V. ACCELERATING PULSE CALCULATION
A. Pulse Library Construction

The QPulseLib is a static repository that is designed to
store highly reusable patterns along with their pulses. Besides,
it contains the convolutional results together with patterns
for circuit matching. To construct this library, we select 60
circuits comprising 2-5 qubits for 15 quantum algorithms
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Algorithm 1:
Calculation

Algorithm for Matching and Pulse

Input: Circuit: C, Convolution kernels: K, QPulseLib: L
Output: Pulse sequence: P

1 Initialize empty pulse sequence P;

2 M = Circuit matrix of C;

3 Sort K by kernel size;

4 foreach kernel k in K do

5 feature map = convolution result of k on M;

6 foreach conv_rst in feature map do

7 submatrix = matrix in slide window with size of k in
M corresponding to conv_rst;

8 if conv_rst in L and sub-matrix in L[conv_rst] then

9 pattern = L[conv_rst][pattern];

10 sub-matrix matched with pattern and locked;

11 Add pulse of L[conv_rst][pulse] to P;

12 end

13 Update M;

14 end

15 end

16 Calculate pulses for gates not synthesized;

listed in Table I. These circuits are first transformed using
Qiskit [36] to comply with hardware constraints, such as basis
gates decomposition and quantum processor topology.

The number of patterns labeled in QPulseLib directly affects
the efficiency of circuit matching. In other words, we need
to balance the tradeoff between library storage overhead and
the number of extracted patterns. To tackle this, we set a
threshold to decide the number of patterns in the library, which
is formulated as the frequency of patterns occurring in the
benchmarking circuits. Patterns below the threshold are filtered
out, while the patterns with high reuse-frequency are included
to build the QPulseLib.

We observe that both large-scale circuits and small-scale
circuits share a number of same patterns when building
QPulseLib. This is because, currently, quantum circuits are
orchestrated from highly-specialized quantum algorithms,
which usually feature structural subcircuits. Our experiments
will provide a visualization of these structural patterns and
detailed evaluation results.

B. Matching Algorithm for Pulse Calculation

QPulseLib takes the target quantum circuit as input and
initiates the synthesis by transforming it into a matrix represen-
tation. As mentioned before, we employ different convolution
kernels to identify the reusable patterns, which may lead to the
case that multiple patterns match the same subcircuit. To avoid
redundant calculation, we propose a matching algorithm by
prioritizing the reuse opportunity of convolution kernels. As
shown in Algorithm 1, we employ a greedy-based algorithm
that always compares conv_rsts from larger kernels before
proceeding to smaller ones. To be specific, we define P as
the output pulse sequence of the target circuit. Convolution
kernels are sorted depending on their size to ensure that the
matching begins with the largest kernel. For each kernel,
we use the convolutional operator on the circuit to obtain a
set of output feature maps and then search for the matched
conv_rsts in QPulseLib. After successfully finding the matched
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submatrix with the current pattern, we collect the submatrix
and terminate the search for the involved gates.

An illustrative example of the matching algorithm is
presented in Fig. 4. Given an input circuit, we consider two
convolution kernels: 1) 2 x 4 and 2) 2 x 2. In Step I, we
apply the larger kernel of 2 x 4, obtaining a conv_rst of
7 4+ mi matched in QPulseLib. After a comparison between
the submatrix and the existing pattern, the submatrix shown
in the red box is labeled as searched, adding the pulse of this
pattern to the pulse sequence. In Step 2, we continue to apply a
smaller kernel 2 x 2 to perform convolution to the rest part of
the circuit matrix. For gates that are not covered by patterns,
we dynamically calculate the pulse via traditional functions,
until the complete pulse sequence for the circuit is generated
and concatenated.

VI. SMARTQCACHE ARCHITECTURE
A. System Architecture Overview

The insight of SmartQCache architecture is the near-
quantum design for fast synthesis and low-latency pulse
transmission, meanwhile achieving high pulse accuracy by
adopting centralized pulse sequence calibration in an embed-
ded cache. We deploy a smart cache to enable pulse segments
prefetching. The L1 cache is dynamically updated depending
on the reuse frequency of pulses. While the L2 cache is static,
containing pregenerated pulses of multiple patterns. We also
add pulse optimization steps, including duration optimization
with GA, pulse calibration for distortion and crosstalk, and
timing optimization for time shift reduction, heading for more
precise pulse control.

Fig. 5 presents the entire all-in-FPGA quantum control
system with SmartQCache. At the beginning, for an input
quantum circuit, the host CPU generates gate lists and sends
them to SmartQCache. Upon receiving the input gates, we
perform Pcode encoding and pattern matching, which gener-
ates input gates for cache utilization. With Pcode, we perform
pulse calculation by prefetching the pulse segments from the
two-level cache. In the pulse calculation process, initially,
we conduct pattern matching for the input quantum circuit
and fetch the pulses from L1 cache once receiving a hit. If
missed in L1 cache, the search extends to the L2 cache to
locate the target pulse segments. The fetched pulse segment is
added to the pulse sequence to fulfill pulse calculation. Next,
pulse optimization steps of duration optimization and pulse
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calibration are also considered. For different stages in pulse
synthesis, we design a pipeline scheme for these pulse syn-
thesis steps. After the pulse synthesis process, SmartQCache
sends the calibrated pulse sequence to on-board FPGAs. These
FPGAs undertake the transmission of discrete pulses to the
quantum processing unit (QPU) by producing synchronous
analog signals through the channels of DAC. The analog pulses
undergo wire transmission and analog devices, such as I[-Q
mixer and low-pass filters to form accurate control signals.
The readout pulse sequence returned from QPU is captured
and decoupled by analog digital converters (ADCs), and sent
to the host CPU afterward. SmartQCache aims to optimize the
intermediate process of pulse synthesis, to construct a fast and
precise quantum pulse control system by reducing the time
cost of pulse calculation and considering the complete process
of pulse optimization.

B. Two-Level Cache Design

The insight of designing the two-level cache lies in the
observation that there are massive reusable circuit patterns
in quantum circuits, whose corresponding pulses can be
cached in advance. Furthermore, we can store the pulses of
circuit patterns in different levels of the cache based on their
frequency of occurrence. The design of the two-level cache
includes gate list format transformation, encoding method for
cache hit principle, and L1 cache update policy. SmartQCache
also incorporates a GA of duration optimization for the entire
sequences.

Generating Circuit Gate Lists: As explicated in
Section II-B, we need gate lists to describe gate collections
and parameter-setting lists for quantum device setups for
each gate. Each gate list stores the position along with its
key parameters and each parameter-setting list contains other
hardware-level set-ups about the operation. For a circuit of
N qubits and M layers, the RX gate list can be stored in a
sparse format, recording gate location and the phase of x-axis
rotation. The location of an RX gate in nth qubit and mth
layer of the circuit is regarded as (nth, mth), then we store
the phase into the rotation. In the gate list of CZ gates, we
similarly record the position of CZ gates, but store its voltage
bias instead of rotation. Also, for coupler lists, the location
indicates the two coupling qubits and the timeline of layers.
The format of gate lists containing essential information for
the circuit and the parameter-setting lists ensures accurate
reproduction of pulses, allowing adequate utilization of the
two-level cache.

To accelerate the synthesis of pulses, our goal is to identify
the reusable patterns in the matrix representation. Therefore,
we propose an encoding method for gates in the gate list.
Different from QPulseLib, we propose an encoding method
for circuit patterns to save the bandwidth and exploit the pulse
library extracted beforehand. As the rotation angles range
between —m and 7, to ensure accuracy, we select the upper
32 bits of the fractional part of values as the phase parameter.
With the transmission bandwidth of k bits, k/32 adjacent
gates in the quantum circuit are combined into a new value
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Fig. 6. Pattern matching and two-level quantum cache. (a) Pattern matching
with Pcode. (b) Paras matching with search trees. (c) Two-level quantum
cache.

indicating the identity of circuit patterns, labeled as Pcode.
Pcode is also the search key of the cache. If the Pcode of
the input circuit within the sliding window matches the Pcode
in the cache, we can fetch the pregenerated pulse and add
it to the sequence of corresponding channels. For instance,
Fig. 6(a) shows a matching example of RX gate lists, we set
the sliding window to be square with the width w = 2. The
rotation values of RX gates in the red box are encoded as a
Pcode for subcircuit matching, so as the right yellow box.

Cache Details: The two-level cache stores Pcodes as
keys and precalculated pulses for reusable circuit patterns
as corresponding values. We set a two-level cache, an L1
cache that offers high-speed access with a small capacity,
and an L2 cache that contains massive pulse segments and
offers relatively low-speed access. When constructing the
cache, we extract frequently-used circuit patterns from small-
scale regular quantum algorithm circuits for pulse caching,
as frequently-used circuit patterns from small-scale quantum
algorithm circuits can also be reused in large-scale quantum
circuits [14]. We record their frequency of occurrence and
store all of the pulse segments for reusable circuit patterns in
the L2 cache. For the L1 cache, due to limited storage, we set
a threshold proportion 8 to select the top patterns according to
access frequency and store the corresponding pulses for pulse
prefetching. For patterns with the same Pcode but different
parameters like gate frequency or amplitude, we store a small
search tree under each Pcode to further examine other gate-
setting parameters for accurate cache utilization.

To exploit the two-level cache, we conduct subcircuit pattern
matching for a new input quantum circuit. We apply a square
slide window according to the gate list and generate adjacent
gates to encode a Pcode. We define a hit indicates a successful
matching of Pcode and a miss for an unsuccessful matching.
As illustrated in Fig. 6(a) and (c), when the Pcode of the
red sliding box matches a Pcode in the L1 cache (a hit), we
further continue parameters matching involving gate frequency
f, standard deviation o and amplitude Amp with search trees,
as shown in Fig. 6(b). If matched, the pulses in the cache can
be fetched and added to the sequence. Equation (1) indicates
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that if f and o match but the Amp is different, we can just
fetch an existing pulse under the current Pcode and change
the Amp simply through multiplication. However, the failure
of search for f or o is regarded as a miss. When encountering
a miss in L1-Cache, we can turn to the L2 cache for further
pattern matching, as shown in Fig. 6(c). If the search in the L.2
cache still returns a miss, we further conduct function-based
calculations to generate the pulse segment.

Considering various input quantum circuits, the two-level
cache should be updated at times. We set an attribute Freg
to record the hir times of the Pcode. The two-level pulse
performs hit frequency analysis based on heap sorting. After
a fixed period 1, the pulses of patterns with higher Freq are
transferred to the L1 cache, and pulse segments for patterns
of lower Freq are relocated to the L2 cache.

In superconducting quantum devices, pulse envelopes (e.g.,
Gaussian) are fine-tuned through grid search and manual
adjustments. This process involves sweeping and adjusting
parameters, such as pulse amplitude, pulse width, pulse timing
(center), rise and fall times, and pulse frequency. These param-
eters are optimized according to the optimal combination
within the parameter space that yields the highest fidelity. Once
identified, this parameter set generates the pulses during the
current calibration cycle. Note that after each calibration, the
L1/L2 cache is fully recalculated and updated according to
the newly optimized parameters. This update process occurs at
the beginning of each calibration cycle, ensuring the prestored
pulses align with the current calibration requirements. These
updated pulses are then uploaded to the FPGA to ensure
efficient execution during the calibration cycle.

Duration Optimization: After obtaining raw pulse sequences
with a two-level cache, SmartQCache fine-tunes the time
interval between pulses to adjust the duration of sequences.
We employ a GA to find the optimal interval for pulse
execution. We first randomly select the time sequence and
shapes of pulses in the two-level cache as candidates. With
the optimization subjective of higher pulse accuracy and
lower latency, GA then performs a stochastic search, which
iteratively evaluates the value of the candidates. The search
concludes upon reaching the predefined iteration threshold,
obtaining the optimized sequences before calibration.

VII. PULSE CALIBRATION AND OPTIMIZATION

Existing approaches face the tradeoff between synthesis
latency and pulse accuracy. Compute-in-CPU system leads
to long calibration synthesis latency for tremendous pulse
data and transmission cost to co-processors. While existing
all-in-FPGA methods get low accuracy for adopting single-
gate pulse calibration, not the entire sequence, neglecting
crosstalk and sequence distortion caused by imperfect hard-
ware. We provide FPGA-based precalibration strategy to store
distortion-calibrated XY pulses in cache, avoiding redundant
convolutions for cached pulses. Through in-cache precali-
bration strategy, we speedup pulse calibration by fetching
precalibrated pulses and improve pulse accuracy by offering
complete calibration steps to reduce crosstalk and pulse
distortion.

S So,u
51,0 * S
. i
: Crosstalk Sig e e Siu

I matrix
: Ideal pulse matrix
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Fig. 7.  Pulse calibration and time shift correction. (a) Crosstalk pulse
calibration. (b) Pulse distortion calibration. (c) Time shift correction.

A. Pulse Calibration in Cache

The insight of pulse calibration lies in the observation
that the dominant device noise and crosstalk from imperfect
hardware can be eliminated by adding pulse compensation.
SmartQCache employs a distortion-calibrated RX gate cache
to avoid repetitive convolution and a timeline buffer to reuse
the crosstalk matrix when calculating crosstalk compensation.
We also carefully arrange the pulse correction order for
different types of noise to minimize redundant calculations
during the pulse calibration process.

Pulse distortion often occurs as changes in amplitude or
phase of executed pulses arise in the flux-bias line, represented
by H(w) as detailed in (2). Therefore, we can convert the
pulse sequence to the frequency domain and multiply it with
H(w), or convert H(w) to the time domain as H(t) and
deploy convolutional operators, as shown in Fig. 7(b). Hereby
we effectively mitigate pulse distortion, optimizing the pulse
shape within each channel. For quantum hardware devices,
crosstalk comes from unwanted geometric coupling due to
neighboring flux leakage. Simply, we can measure the flux
leakage for an operation among channels to obtain a crosstalk
matrix [37], as shown in Fig. 7(a). Calibration is then achieved
by multiplying crosstalk matrix with the pulse sequence matrix
to generate compensation pulses for the target channels.

Varying degrees of crosstalk in channels lead to different
calibration strategies: 1) for pulses within the XY channel, due
to little crosstalk when executing RX gates, we precalibrate
distortion while loading the RX gate cache. Therefore, when
prefetching the pulse sequence with the two-level cache, we
can directly add the distortion-calibrated pulse into the blank
sequence, saving computing overhead by avoiding redundant
convolutions. Subsequently, crosstalk calibration is applied
to these sequences and 2) for pulses within the Z channel
and coupler Z channel, because of inevitable crosstalk when
executing CZ gates, we cannot conduct pulse distortion cali-
bration before crosstalk calibration, as amplitudes of the pulse
sequence change significantly. We generate duration-optimized
sequences and propose crosstalk calibration first, then deploy
distortion calibration for sequences of these channels.

B. Timing Optimization and Pipelining

Nonorthogonal I-Q sequences bring errors when executing
quantum pulses, leading to poor accuracy. As illustrated in
Fig. 7(c), the I-Q sequence in the XY channels for controlling
the same qubit exhibits a time difference Af, which is called
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time shift caused by signal transmission errors. In addition,
various lengths of wires will also cause time differences in
quantum execution. We collect time compensation for each
channel to ensure the synchronization of pulse control. For
sequences across all DAC channels, we set up a standard time
step and adjust time shifts, as shown in Fig. 7(c).

SmartQCache employs a 3-stage process for efficient over-
lapped computation with pipelining. The transformation of
gate lists is computed offline for a quantum circuit to save
on-chip resources. In stage 1, we capture the operations of
valid qubits from gate lists to obtain the timeline buffer, then
we conduct Pcode encoding for input gates. In stage 2, we
conduct circuit pattern matching to prefetch the pulse segments
from the cache and calculate pulses for the unmatched gates.
We also apply duration optimization to adjust the time interval
between channels. In stage 3, we deploy pulse calibration and
time shift correction to generate the entire pulse sequence for
the input quantum circuit.

VIII. EVALUATION
A. Experimental Setup

QPulseLib Simulated Hardware: We simulate the pulse
synthesis process on quantum devices with 10, 15, 20, 25,
30, 35, 50, 100, 150, 200, 250, and 300 qubits. The voltage
bias B is set to 10 in the simulation. The topology of these
processors is configured to be similar to the 79-qubit Rigetti
quantum device [38]. We set the duration of single-qubit gate
to be 50 ns while the two-qubit gate to be 150 ns, similar to
Rigetti quantum device. Considering QPulseLib focus on pulse
calculation on CPU, we measure the latency of this process
for QPulseLib synthesis [39].

SmartQCache Platform and Implementation: Publicly avail-
able quantum computers, such as IBMQ [40], do not reserve
interfaces for near-quantum pulse-level control and execution
with hardware-level calibration [1]. We set the target device
of SmartQCache to a self-developed superconducting quantum
device, with 18 Xmon qubits arranged in the 3x6 grid qubit
topology. Our quantum device deploys RX, RZ, and CZ
gates as basis gates. Fig. 8 presents the implementation of
SmartQCache architecture. We employ AMD EYPC 9554,
3.10 GHz as our host CPU. SmartQCache is implemented
on Xilinx ZCU102 with an operated frequency of 200 MHz.
Since SmartQCache involves complete pulse generation steps,
including pulse calculation and pulse calibration, we test the
overall pulse generation synthesis latency and pulse accuracy
for SmartQCache. For sequential pulse execution, we deploy
11 boards equipped with Xilinx XCKU115 and DAC, and a
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board equipped with Xilinx XC7K325T and ADC. We employ
arbitrary waveform generators, I-Q mixers, amplifiers, and
low-pass filters as analog frontend, benefiting precise control
of 18 Xmon QPU.

QPulseLib Comparison: For the pulse calculation synthesis
on the host, we compare QPulseLib with Qiskit Pulse and
AccQOC. Since Qiskit Pulse is implemented in Python, we
have also implemented QPulseLib and AccQOC in Python.
For QPulseLib, we use Numpy and Scipy packages for
matrix multiplication and 2-D convolution. For AccQOC, we
strictly follow the pulse-compilation speedup part provided in
this article and successfully reproduce their circuit subgraph-
matching pulse generation method with a similar speedup
(9.97x in our code versus 9.88x reported in AccQOC). We use
Networkx package to generate the complete similarity graph
for circuit analysis in our implementation of AccQOC. The
codes for QPulseLib and the reproduction version of AccQOC
are available at (https://github.com/JanusQ/QPulseLib).

SmartQCache Comparison: Besides QPulseLib and
AccQOC, we also implement the pulse duration optimization
method PAQOC in Python on the host CPU, while QuMA is
implemented on Xilinx ZCU102. We reproduce gate-by-gate
pulse generation method in C++ with high-level synthesis,
as described in QuMA paper.

Two-Level Cache Construction: We exploit 5 well-known
quantum algorithms to cache reusable pulses for frequently-
used circuit patterns, such as Bernstein—Varzirani (BV),
Greenberger—Horne—Zeilinger (GHZ), QFT, VQC, and HS at
the range of 2-4 qubits. We implement the L1 cache using
Flip-Flops and L2 cache on BRAM. It takes 0.17 and 2.26
MB to implement L1 cache and L2 cache for RX gates, CZ
gates and couplers, respectively.

Experimental Configurations: Considering hardware device
implementation, we use RX, RZ, and CZ gates as basis gates
for circuit transpilation before pulse synthesis. As RZ gates
are typically realized as virtual gates with a latency of 0
ns [41], we only focus on RX gates for the XY channel and
CZ gates for the Z channel in the process of pulse calculation.
In the configuration of SmartQCache, we set the transmission
bandwidth k of gate lists to 128 bits. The selection threshold
proportion S for the L1 cache is established at 3%, and the
update period f,, for the two-level cache is set to 2 min. The
sample rate of the pulse sequences is set to 2 GHz.

B. Speedup for Pulse Calculation With QPulseLib

Fig. 9 presents the pulse calculation latency of Qiskit
Pulse [1], AccQOC [3], and QPulseLib on the 15 algorithms.
The x-axis represents the number of qubits, while the y-axis
represents the average pulse calculation latency, measured
in seconds. Overall, QPulseLib achieves significant speedup,
with a speedup of 158.46x and 16.03x compared to Qiskit
Pulse [1] and AccQOC [3] in pulse calculation latency, and
1091x and 1.21x speedup for end-to-end circuit synthesis
latency, respectively. This is attributed to the fact that our pulse
library effectively reduces redundant computation by pulse
reuse. In contrast, the pulse calculation of Qiskit Pulse involves
massive redundant computation. As a result, it requires
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size due to the combinatorial nature of subgraph matching.
While Networkx is a powerful graph library that supports
various graph algorithms, it is a general-purpose tool. It
may not be optimized explicitly for computing the minimum
spanning tree (MST). Therefore, beyond the reduction in
computational overhead, QPulseLib’s software architecture
offers significantly better execution efficiency on underlying
hardware than AccQOC. This enhanced efficiency is a critical
factor in QPulseLib’s ability to accelerate quantum pulse
generation.

C. Threshold and Reuse Rate of QPulseLib

Note that as the size of the pulse library grows, QPulseLib
involves more matching time but more opportunities to elim-
inate redundant computation. We evaluate the matching time
per circuit under different thresholds in Fig. 10(a), as the
threshold increases, fewer patterns are preserved in the library.
We observe that the best threshold for efficient matching
is 0.13, as it achieves a high reuse rate while requiring
the minimum matching time. With appropriately setting the
threshold, QPulseLib occupies 1.2 MB of memory, profiled by
memray package.

(b)—(d) Evaluation of pattern reuse rate and speedup under different numbers
of qubits in ISING, QKNN, and DJ algorithms, respectively.

As the number of qubits grows, the reuse rate of each
algorithm increases and then converges to a specific value. For
example, the reuse rate of ISING algorithm [19] increases from
49.2% to 68.6%. This is because such algorithms involve many
repeated circuit patterns. A higher reuse rate suggests a higher
speedup as more redundant computation can be eliminated.
For example, when the reuse rate of DJ algorithm increases
from 57.1% to 66.2%, the speedup increases from 36.41x to
97.91x.

D. Visualization of Reusable Patterns

Table II presents the patterns that are frequently reused
in the evaluate 15 algorithms. We observe that algo-

rithm circuits with different numbers of qubits still
Ccz I

share the same patterns. For instance, gg CIZ and
CzZ Cz

(/4 1 1
CZ Ux(=%,0) CZ Ux(%,0)

] patterns frequently occur in
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TABLE II
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Fig. 11 depicts the end-to-end synthesis latency, including
pulse calculation and pulse optimization, compared to Qiskit
Pulse [1] and QuMA [2] on 5 algorithm circuits at 5 [Fig. 11
(a)], 10 [Fig. 11 (b)], 15 [Fig. 11 (c)], 18 [Fig. 11 (d)] qubits.
We repeat the pulse synthesis of each circuit 5 times and
calculate the average synthesis latency. Overall, SmartQCache
achieves a speedup of 294.37x compared to Qiskit Pulse
for pulse synthesis. Considering accurate pulse calibration
steps, SmartQCache marginally expands the average synthesis
latency from 5.3 to 27.5 ms, compared to the nonsequence
calibration method, QuMA. This is attributed to the fact that
we employ a two-level cache to prefetch stored pulse segments
for pulse calculation and design an encoding method for rapid
circuit pattern matching. In contrast, Qiskit Pulse generates
pulse sequences gate-by-gate, involving massive redundant
calculations. For example, it takes around 9.76 s to accomplish
the pulse synthesis for an 18-qubit VQC circuit with the typical
architecture, while SmartQCache requires only 76.3 ms. As
the scale of qubit increases, the synthesis latency grows more
slowly compared to Qiskit Pulse, which indicates utilization of
pulse caching at large-scale quantum circuits saves more time.
QuMA [2] supports pulse calculation and pulse calibration. It
is hard to decouple the calculation latency, so we only compare
the end-to-end latency with QuMA. State-of-the-art methods

©) ()

Fig. 11. Synthesis latency comparison. (a) Synthesis latency for #qubit=5.
(b) Synthesis latency for #qubit=10. (c) Synthesis latency for #qubit=15. (d)
Synthesis latency for #qubit=18.

like AccQOC [3] and QPulseLib [14] only focus on pulse
calculation, not suitable for comparison shown in Fig. 11.
We adopt compute-in-CPU architecture with these methods
to accelerate pulse calculation on the host and compare
SmartQCache to the optimized scheme for 5 algorithm circuits
at 10 qubits. Table III presents the latency of pulse calculation
of 3 methods, showing SmartQCache achieves 145.43x and
15.12x speedup of pulse calculation compared to AccQOC
and QPulseLib. The results indicate that although typical
architecture adopts state-of-the-art optimization approaches,
SmartQCache can still outperform existing pulse calculation
methods, indicating that the architecture of the near-quantum
pulse synthesis is more suitable for fast pulse control systems.

F. Pulse Accuracy

Fig. 12(a) presents the pulse duration of 5 algorithm circuits
at 10 qubits for QuMA [2], PAQOC [16] and SmartQCache.
Overall, SmartQCache achieves 47% duration reduction for
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TABLE III
EVALUATION OF PULSE CALCULATION SYNTHESIS LATENCY

Algorithm  Qiskit Pulse [1]  AccQOC [3] QPulseLib  SmartQCache
BV 39ms 4.05ms 3.04ms 0.12ms
GHZ 116ms 11.88ms 3.19ms 0.30ms
HS 345ms 35.23ms 4.12ms 0.28ms
QFT 1353ms 138.15ms 9.16ms 0.55ms
vQC 2550ms 260.21ms 8.17ms 0.94ms
us (%)
= QuMA 2] 11PAQOC [16] QuMA (2] & SmartQCache
£ O SmartQCache :T A,
= 1 > A A
510 E 99.9 T —
=
0
3 101 i; 99.6
Z10 D H H @ 99.3
0 99.0
é OQ(\) Q:‘J é& AQ?) X X2 X/4'Y Y2 Y/4
(a (b)
Fig. 12. (a) Duration optimization comparison. (b) Pulse accuracy of

QuMA [2] and SmartQCache.

the generated sequence, compared to QuMA. Compared to the
CPU-based state-of-the-art method, PAQOC, SmartQCache
also achieves 2.3% duration reduction on average. The pulse
duration optimization with GA finds proper intervals among
sequences from different channels, reducing the execution
latency of quantum programs at the hardware level.

Although compute-in-CPU architecture takes a long time to
conduct pulse synthesis, it calibrates the pulse very carefully
with complete pulse calibration methods to obtain accurate
pulse sequences, achieving high fidelity for circuit execution.
We use grid search and precise manual modulation to find out
the best pulse parameters for the real-world quantum device.
Qutip [42] is then used for the pulse simulation, and we also
add relaxation noise and crosstalk into the simulation model.
We generate pulses of X, X/2, X/4, Y, Y/2, and Y/4 produced
from SmartQCache and QuMA [2] and obtain the state fidelity.
As represented in Fig. 12(b), SmartQCache achieves 1.27x
improvement in fidelity compared to QuMA. SmartQCache
not only deploys the two-level cache to conduct fast pulse
calculation but also adopts complete pulse calibration for exact
pulse control, while QuMA lacks calibration for the sequence,
resulting in low pulse accuracy.

IX. RELATED WORK

Typical control methods, such as Google [10] adopt the
host-FPGAs architecture that contains the host to perform
pulse synthesis and on-board FPGAs to conduct pulse execu-
tion, which achieves high fidelity but takes massive time for
pulse synthesis. Near-quantum solutions, including QuMA [2]
and QuAPE [11] offers FPGA-based solutions for quantum
pulse control system. Both of them adopt jump table on
distributed FPGAs to directly work on pulse synthesis and
execution, which reduces synthesis overhead but neglects cen-
tralized pulse sequence calibration, resulting in high execution
error of pulse sequences.

As for pulse synthesis optimization on CPUs, PAQOC [16],
and Liang et al. [43] achieved duration optimization of the gen-
erated pulse sequence, reducing the time of quantum program
execution. AccQOC [3] and QPulseLib [14] achieve pulse
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calculation speedup by utilizing pulses of reusable patterns
through subgraph matching and convolution. However, the
implementation of these methods on near-quantum hardware
leads to extremely high synthesis overhead, which limits the
efficiency of pulse generation acceleration.

X. CONCLUSION

In this study, we present QPulseLib and SmartQCache to
figure out the dilemma between the synthesis latency and pulse
accuracy as compute-in-CPU and all-in-FPGA solutions. For
QPulseLib, first, we extract reusable subcircuits as patterns from
small-scale quantum algorithm circuits and pregenerate pulses
for each pattern. We then use convolution operators for pattern
matching and conduct pulse calculation and concatenation
to obtain the pulse sequence for the circuit. The method
has good scalability, making QPulseLib useful for large-scale
circuit synthesis. Moreover, SmartQCache proposes a novel
pulse control architecture with a two-level cache for pulse
synthesis acceleration. We also develop a pulse optimization
scheme, including duration optimization, pulse calibration, and
time shift correction. The method of SmartQCache exhibits
significant acceleration in pulse synthesis while keeping high
pulse accuracy, benefiting quantum pulse control system design.
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