
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 4, APRIL 2024 1177

Rubick: A Unified Infrastructure for Analyzing,
Exploring, and Implementing Spatial Architectures

via Dataflow Decomposition
Liqiang Lu , Zizhang Luo, Size Zheng , Jieming Yin, Member, IEEE, Jason Cong , Fellow, IEEE,

Yun Liang , Senior Member, IEEE, and Jianwei Yin , Member, IEEE

Abstract—The fast-growing tensor applications expose tremen-
dous dataflow alternatives when implemented on spatial
architectures that feature large PE arrays and abundant
interconnection resources. Prior works develop various notations
and performance models for dataflows. Though these notations
are very useful for understanding the reuse, bandwidth, and
performance of dataflows, they do not define the underlying
hardware implementation. Due to the semantic gap, analysis
based on these notations cannot capture the detailed architectural
features between different dataflows, leading to inefficient design
space exploration and suboptimal designs. To address these
issues, we propose Rubick, a unified infrastructure for analyzing,
exploring, and implementing spatial architectures. The main
innovation of Rubick is it decomposes the dataflow into two low-
level intermediate representations: 1) access entry and 2) data
layout. Access entry specifies how data enter into the PE
arrays from memory, while data layout specifies how data
are arranged and accessed. These two representations allow
us to infer the hardware implementation details, such as PE
interconnection and memory structure, which are amenable for
structural analysis and systematic exploration. Based on this
decomposition analysis, Rubick provides opportunities for micro-
architecture optimization and efficient design space exploration.
Our experiments demonstrate that Rubick can reduce 82.4% of
wire resources with only a 2.7% latency increase by optimizing
access entry IR, and achieve 70.8% memory overhead reduction
by optimizing data layout IR. Rubick also accelerates the DSE
time of dataflows by up to 1.1 × 105X, saving the time from
several days to minutes. The source code of Rubick is publically
available on (https://link-omitted-for-blind-review).
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I. INTRODUCTION

SPATIAL architectures play a pivotal role in the accelera-
tion of various tensor applications [6], [7], [8], [9], [13],

[16], [17], [21], [23], [31], [37], [45], [51], [53], [54], [55],
[56], [64], [66], [73]. A typical spatial architecture features
a processing element (PE) array with a scratchpad memory,
which exhibits high-compute parallelism and energy effi-
ciency. Besides, there are abundant interconnection resources
that connect PEs to support different datapaths and enable
efficient data reuse. Spatial architecture is a natural fit for
tensor applications, whose computation and memory access
are highly regular but demand high performance [1], [2], [14],
[27], [42], [59], [62], [67].

Hardware dataflow is the key component when implement-
ing applications onto spatial architectures, which assigns the
instance in the loop iteration domain to a spacetime-stamp
in the dataflow spacetime domain. Specifically, the space-
stamp gives the PE location to execute an instance, while the
time-stamp determines the execution sequence. Therefore, the
dataflow implies 1) how data enter the specific PEs from
the scratchpad SRAM and traverse across PE array and 2) how
data are arranged in the on-chip memory and scheduled during
computation. For example, Google’s tensor processing unit
(TPU) applies systolic dataflow to accelerate general-purpose
matrix multiplication (GEMM). This dataflow determines that
only boundary PEs will read data, and data traverse between
adjacent PEs. Besides, the data layouts are skewed when
accessed from the scratchpad to PEs. While Cambricon [38]
and MAERI [31] feature reduction tree dataflow, which
indicates that data are broadcast to PEs in rectangle data
layout. Other spatial architectures that enable reconfigurability
like DySER [17] and Plasticine [54], integrate PEs and their
interconnection in a flexible manner and hence support a wider
range of dataflows.

Recently, several frameworks have been proposed for
dataflow analysis and performance modeling [5], [8], [18],
[20], [25], [29], [30], [39], [40], [43], [49], [50], [70], [71],
[72]. Among them, MAESTRO [29], Interstellar [71], and
TENET [39] are three state-of-the-art dataflow modeling
frameworks. MAESTRO [29] proposes a data-centric notation
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that represents the dataflow according to the data index
allocation. Interstellar [71] uses loop-nest with primitives to
describe the dataflow, known as the compute-centric notation.
TENET [39] proposes a relation-centric notation that models
dataflows as mappings from computational instances to PEs
and cycles. Despite that all these frameworks are capable of
precisely modeling the dataflow and estimating performance
metrics like reuse and latency, there is still a semantic gap
between these dataflow notations and architecture implemen-
tation. These existing frameworks model the behaviors of
loop instances that intertwine multiple tensors, and model the
spatial architecture in its entirety. However, different tensors
might have distinct characteristics and behavior (e.g., dimen-
sion, size, movement, etc.). It is hard to infer the behavior
of each tensor from the high-level notation, including data
access patterns and data arrangements. On the other hand,
the spatial architecture consists of PEs and memory, which
serve distinct purposes in program execution. The architecture
implementation of computation and memory requires different
low-level architectural features.

Another limitation of prior frameworks is inefficient design
space exploration. The design space formed by alternating
the parameters at high level is explosively large, which takes
extremely long to explore. Furthermore, we observe that some
dataflows generated by prior frameworks are inferior due
to low-resource utilization and redundant computation. In
addition, the structural similarity between different dataflows
cannot be recognized at high level. For example, TPU [23]
and OuterSpace [48] are two distinguished GEMM dataflows
that exhibit different parallelism. However, they share the same
data movement of one input matrix, which actually can be
inferred from low-level representations. As a result, the design
space exploration at high level cannot be used for hardware
optimization when architectural constraints are specified.

In this article, we propose Rubick, a unified infrastructure
for analyzing, exploring, and implementing spatial dataflow.

To Analyze the Dataflow, we first decompose the dataflow
as a Cartesian product of different tensor movements. Then,
each tensor movement is further decomposed into a chain
product of two low-level IRs: 1) access entry and 2) data
layout to describe the hardware characteristics of computation
and memory, respectively, which can be beneficial to abstract
some hardware details. To be more concrete, the access entry
explicitly provides PE interconnection and memory interface,
describing both the location and timing of data transfers from
memory to PE. The data layout describes which element is
used for a specific access entry and thus explicitly specifies the
tensor data arrangement in the memory bank of the on-chip
buffers, and its access sequence as address generators. With
these two low-level IRs, Rubick can expose rich architectural
details.

To Explore the Dataflow, we form the design space of
dataflows in a structured way. We first form the subspace of
access entry and data layout separately, then compose them
together. By doing this, we can easily capture the similarity
among the dataflows within each subspace, thus dramatically
reducing the total space by pruning out hardware inefficient
designs. More clearly, the access entry space is formed as a

linear space that consists of multiple linear combinations of
access direction vectors. The data layout space enumerates all
the possible linear transformation that maps the tensor to a
spacetime-stamp.

To Implement the Dataflow, we present the relationship
between Rubick IRs and the implementation details. To be
specific, we demonstrate how the access entry IR determines
the PE micro-architecture, e.g., fan-in/fan-out, pipeline latency,
and reduction scheme. The memory hierarchy is implemented
as multidimensional times-stamps of data layout IR, including
off-chip memory, on-chip memory, and address generator.
Finally, we develop a generation tool that can automatically
implement the hardware using IR Chisel template.

A preliminary version of this article will appear in DAC
2023 [41], we proposed to synthesize various dataflow through
dataflow decomposition. In this article, we extend previous
work with analytical techniques to further demonstrate the
benefit of Rubick IRs. To be specific, we present the intuition
of why there requires a decomposition theory, and provide
further architecture implementations, including hardware opti-
mizations and hardware generation. Finally, we apply our
decomposition technique on various dataflow to extract the
low-level information and provide optimization results after
balancing the different tradeoff.

In conclusion, this work makes the following contributions,
1) We propose dataflow decomposition into IRs for ana-

lyzing the dataflow, which are formulated as integer
mapping functions that explicitly expose low-level archi-
tecture.

2) We propose a systematic and efficient dataflow formu-
lation methodology that composes the dataflow in the
subspace of each IR, which supports to search dataflow
under low-level constraints.

3) We propose the methodology for dataflow implemen-
tation using Rubick IRs. By closing the semantic gap
between dataflow and architecture, Rubick allows vari-
ous optimization techniques and hardware generation.

Our experiments demonstrate that Rubick can reduce 82.4%
wire resources with only 2.7% latency increase by optimizing
access entry IR. For multikernel benchmark, Rubick shows
5.6X–49X, 64X reduction for intermediate buffer size com-
pared to NVDLA [47] and TPU [23]. Rubick also accelerates
the DSE time of dataflows by 1.6 × 103X–1.1 × 105X,
saving the time from several days to minutes compared to
TENET [39].

II. BACKGROUND

A. Tensor Basics

A tensor is defined as matrices with any number of dimen-
sions. The number of dimensions is defined as its order. For
example, a scalar is a zero-order tensor and a vector is a one-
order tensor.

Iteration Domain and Loop Instance: Given a loop nest with
one statement, its iteration domain DS is the set that contains
all the loop instances. Each instance S is labeled with a loop
iterator �n consisting of loop variables i, j, · · ·

DS = {S(�n) | �n = (i, j, . . . , )}.
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Tensor Domain: The tensor domain is the set of all the
elements in the tensor. The dimension of the tensor domain is
the same as its order. The tensor domain of tensor A is denoted
using �n′ consisting of tensor indexes

DA =
{

A
( �n′

)}
.

Access Function: Given a loop instance, the access function
returns the tensor elements used by this instance, which can be
regarded as a mapping from iteration domain to tensor domain

ADS→(DA,DB,... ) =
{

S(�n) →
(

A
( �n′

A

)
, B

( �n′
B

)
, . . .

)}
. (1)

For example, the instance, tensor domain, access function of
GEMM is written as follows:

S(�n) : Y(i, j)+ = A(i, k) × B(k, j), �n = (i, j, k)

DA =
{

A
( �n′

)
| �n′ = (i, k)

}

ADS→(DA,DB) = {S(i, j, k) → (A(i, k), B(k, j))}.

B. Spatial Dataflow

A key component of a spatial architecture is the dataflow
that determines how a tensor kernel is mapped onto the
architecture. In general, the dataflow is represented from
two aspects: 1) the space-stamp that describes where a loop
instance is executed and 2) the time-stamp that describes when
a loop instance is executed. In this article, we assume that
the space-stamp refers to the PE, and the time-stamp refers
to the execution cycle. Various notations have been proposed
recently, including compute-centric notation [71], data-centric
notation [29], [30], and relation-centric notation [39]. In this
article, we choose to use the relation-centric notation, as it is
more expressive than the other two notations and can express
the complete design space of dataflows. Using relation-centric
notation, the dataflow is a set of relations where each relation
is a mapping from one loop instance to a space-stamp and
time-stamp

�DS→Dst = {
S(�n) → (

PE(�p) | T
(�t))}. (2)

Dataflow Spacetime Domain: (Dst) is the domain that
consists of multiple spacetime-stamps (space-stamp and time-
stamp), where each spacetime-stamp refers to a PE at a certain
cycle. �DS→Dst assigns a loop instance S(�n) from iteration
domain to a spacetime-stamp from dataflow spacetime domain.
The space-stamp PE(�p) gives the coordinates of PE where
the instance will be executed, and the time-stamp gives the
execution sequence. �t can be one or multidimensional and the
sequence is determined by the lexicographical order of time-
stamp T(�t). For example, S(0, 1, 0) → (1, 0 | 0, 1) means the
instance S(0, 1, 0) is executed in PE(1, 0) at cycle(0, 1).

Tensor Movement: Given a tensor domain for a target tensor
A with its index vector �n′, the tensor movement is defined as
a mapping from the dataflow spacetime domain to the tensor
domain. For a specific dataflow spacetime-stamp, it gives the
required tensor element

MDst→DA =
{(

PE(�p) | T
(�t)) → A

( �n′
)}

. (3)

Fig. 1. Motivational example using 1D-CONV. Prior compute-
centric [20], [71], data-centric [24], [29], and relation-centric [21], [39]
approaches cannot expose the low-level architecture, while primitive-based
approach cannot explicitly describe the dataflow. Rubick IR can bridge the
semantic gap between dataflow and architecture.

C. Motivation

Though prior dataflow frameworks [29], [30], [39], [71]
can accurately estimate performance metrics, such as data
reuses, latency, etc., the semantic gap between these high-
level notations and low-level hardware renders it impossible
to infer the architectural implementation details and perform
structural analysis based on these notations. Fig. 1 gives three
1D-CONV dataflow examples with their low-level architec-
ture implementations. The 1D-CONV instance is written as
follows:

S(i, j) : Y(i)+ = A(i + stride · j) × B(j). (4)

To make a difference, we set the stride of dataflow (a), (b),
and (c) as 1, 2, 1, respectively. In each dataflow, four instances
in the yellow parallelogram are executed simultaneously at the
first cycle(t = 0) on a 2×2 PE array. The green parallelogram
is executed at the second cycle(t = 1).

First, prior notations do not directly describe the hardware
details. We observe that dataflow (a) and (b) share the same
dataflow notation, however, have different architectures. To
be specific, the data-centric notation [29], [30] represents
the dataflow by spatially allocating two elements of ten-
sor Y (SpMap(2,2) i), and two elements of tensor B
(SpMap(2,2) j). Using the relation-centric notation, two
continuous index i is horizontally mapped to the PE array, and
two continuous index j is vertically mapped. Thus, the dataflow
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is written as {S(i, j) → (PE(i%2, j%2) | T(i/2, j/2))}. To
implement the dataflow, in dataflow (a), the architecture shows
a diagonal datapath of tensor A. While dataflow (b) requires a
vertical datapath. Such low-level architectural features cannot
be exposed by the notations. Our access entry IR supports
this, e.g., (x + y) means diagonal access direction and (t1 − x)
means vertical streaming in different cycles.

On the other hand, the notation of dataflow (b) and
(c) is different. For example, using relation-centric notation,
two indexes of i with an interval are horizontally mapped
to the PE array. the dataflow is written as {S(i, j) →
(PE(i/2, j%2) | T(i%2, j/2))}. However, the architecture of
(b) is the same as (c), which means these notations cannot
capture the similarity between different dataflows, leading
to inefficiency of design space exploration. While in our
approach, we can clearly see the IRs of these two dataflows
are the same, resulting in the same implementation.

There are primitive-based representations for describing
the hardware implementation, like HeteroCL [32], Susy [33],
T2S [63], AutoSA [68]. These approaches are essentially
generation tools that adopt high-level languages and rely on
high-level synthesis (HLS) to generate hardware. Fig. 1 shows
the T2S representation for dataflow (b) and (c). Though it tells
the implementation using hardware primitives, this approach
fails to model the dataflow behavior, e.g., when and where a
tensor element is used. Besides, they only cover a subset of
dataflow space. For example, it is hard to write the primitive
for nonorthogonal dataflow like (a).

The semantic gap between dataflow and architecture fun-
damentally results from the fact that 1) the computational
instance is a mixture of multiple tensor behavior, which needs
to be explicitly represented for architecture implementation
and 2) the spatial architecture involves PE array part and
memory, which serve distinct purposes for tensor applica-
tion execution. Based on these two insights, we propose
dataflow decomposition that decomposes the dataflow into
tensor movements, and then decomposes the tensor movements
into low-level architectural IRs.

III. DATAFLOW ANALYSIS VIA DECOMPOSITION

The main novelty of Rubick is to decompose the dataflow
into two low-level intermediate representations (IRs): 1) access
entry and 2) data layout, which are expressive enough for
architecture implementation. Another benefit of the decom-
position approach is efficient design space exploration. By
defining rigorous architectural constraints for the subspace cor-
responding to each IR, the combined space can be significantly
pruned. We derive these two IRs by defining a new domain
called the entry spacetime domain, as shown in Fig. 2.

Definition 1 (Entry Spacetime Domain): (Est) is defined as
the domain that consists of multiple spacetime-stamps Est =
{(E( �pe) | T(�te))}. The spacetime-stamp refers to an entry port
E( �pe) at a certain cycle T(�te), which loads data from memory
and sends them to the PE array.

With this new domain, we can bridge the gap between
dataflow notation and architecture implementation.

Fig. 2. Domains in dataflow decomposition.

1) The left domains (iteration and tensor) in Fig. 2 are
tensor application-driven domains, which are consti-
tuted with loop instances and tensor data. The right
domains (dataflow and entry) are architecture-driven
domains, which are constituted with space-time stamps.
Dataflow (�) maps loop instances to space-time stamps,
while data layout (L) maps space-time stamps to tensor
elements.

2) The top domains (iteration and dataflow) are loop
instance-driven, while the bottom domains (tensor and
entry) are tensor data-driven. The access function (A)

bridges the tensor data with loop instances. On the
other hand, the dataflow spacetime domain repre-
sents a complete architecture, including PE units, PE
interconnection, and memory. The access entry (�)

decouples these implementation details from spatial
architecture.

3) Entry spacetime domain is both architecture-driven and
data-driven domain. It is the interface between PE array
and memory, which controls where and when one tensor
element is accessed. Thus, access entry provides the
datapath. data layout provides tensor data arrangement
and access sequence.

In this section, we first give the formal definition of access
entry, data layout, and decomposition (Section III-A). Then,
we use an example to illustrate how dataflow decomposition
helps for architecture implementation (Section III-B).

A. Dataflow Decomposition

To decouple each tensor behavior from the computational
instance, we first decompose it into different tensor movements
by applying the access function of each tensor

�Dst→DS = (
MDst→DA ⊗ MDst→DB , . . .

) × A(DA,DB,...)→DS .

(5)

Here, we choose to use the Cartesian product symbol ⊗
because the merged access function maps to the Cartesian
space of all tensors. The × symbol means the chain com-
position of two mappings. Considering that the output tensor
indices of most tensor applications are determined by the
indices of input tensors, we only decompose the dataflow into
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Fig. 3. GEMM dataflow decomposition example. The dataflow is decomposed into access entry IR and data layout IR. (a) Dataflow. (b) Access entry.
(c) Data layout. (d) Access function.

movements of input tensors in this article. Taking GEMM as
an example

�Dst→DS = (
MDst→DA ⊗ MDst→DB

) × A(DA,DB)→DS .

As shown in Fig. 2, the tensor movement is further decom-
posed into access entry � and data layout L. This helps to
decouple the PE array part and memory part from spatial
architecture.

Definition 2 (Access Entry): Given a dataflow spacetime
domain Dst of a dataflow, the access entry is defined as a
mapping from Dst to the entry spacetime domain Est

�Dst→Est = {(
PE( �pd) | T

( �td
)) → (

E( �pe) | T
(�te

))}
. (6)

Here, (PE( �pd) | T( �td)) is a dataflow spacetime-stamp that takes
place in PE( �pd) at the time-stamp T( �td). The tensor used by
this dataflow spacetime-stamp comes from the entry space-
stamp E( �pe) at the entry time-stamp T(�te). If two dataflow
spacetime-stamps refer to the same entry spacetime-stamp, it
means they use the same tensor data.

From an architectural perspective, access entry indicates
how to design the on-chip memory. The space-stamp �pe tells
the dimension of memory banks and their allocation. On the
other hand, the time-stamp �te describes the access pattern of
tensor data, which further determines the PE interconnection.

Definition 3 (Data Layout): Given an entry spacetime
domain Est and tensor A domain DA, the data layout is defined
as a mapping from Est to DA

LEst→DA =
{(

E( �pe) | T
(�te

)) → A
( �n′

)}
. (7)

Mathematically, this IR maps the indices in the entry spacetime
domain to the tensor indices. Therefore, it explicitly depicts
which tensor element is used by the entry E( �pe) at T(�te).
Here, the term data layout is a general definition that not only
describes the data arrangement spatially but also the access
sequence of the tensor to or from entry points. Moreover, the
tensor size determines the boundary of each time dimension
(TD), which further decides the memory size.

By defining access entry and data layout, the decomposition
of tensor movement is formulated as follows:

MDst→DA = �A
Dst→Est

× LEst→DA . (8)

Taking GEMM as an example, the decomposition formula is
written as follows:

�Dst→DS =
(
�A

Dst→Est
× LEst→DA

)

⊗ (
�B

Dst→Est
× LEst→DB

)

× A(DA,DB)→DS . (9)

B. Decomposition Example

In this section, we use GEMM dataflow as an example to
illustrate dataflow decomposition. As shown in Fig. 3(a), the
dataflow is written as follows:

�DS→Dst = {S(i, j, k) → PE(k, j%2) | T(i + j%2, j/2)}
where the matrix size is set to 0 ≤ i < 2, 0 ≤ k < 2, 0 ≤ j < 4.
This dataflow involves two spatial dimensions (2×2 PE array),
and two TDs (six cycles in total). For simplicity, we write the
dataflow spacetime-stamp Dst in Fig. 3(a) as {(x, y | t1, t2)}.

Then, we formulate the access entry of input tensor A and
tensor B, as shown in Fig. 3(b)

Tensor A �A
Dst→Est

= {(x, y | t1, t2) → (x, 0 | t1 − y, t2)}
Tensor B �B

Dst→Est
= {(x, y | t1, t2) → (x, y | 0, t2)}.

Identifying that the entry space-stamp is a 1D-vector (the
second dimension of entry space-stamp is 0), we know that
there is only one memory bank of tensor A for PEs in the
same row. On the other hand, this IR maps (x, y | t1, t2) and
(x, y+1 | t1+1, t2) in Dst to the same entry (x, 0 | t1−y, t2),
indicating that elements of tensor A horizontally traverse
across the PE array (along the y-axis). Thus, it requires
building interconnections between adjacent PEs in the same
row when designing the PE interconnection. The access entry
of tensor B shows the same spatial distribution as the PE array
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Fig. 4. Input access entry space on 2D-PE array. The space is formulated as tensor access direction vectors. (a) X-systolic Dir-vec (1, 0 | 1). (b) Y-systolic
Dir-vec (0, 1 | 1). (c) Diag-systolic. Dir-vec (1, 1 | 1). (d) stationary Dir-vec (0, 0 | 1). (e) X-multicast Dir-vec (1, 0 | 0). (f) Y-multicast Dir-vec (0, 1 | 0).
(g) Diag-multicast Dir-vec (1, 1 | 0). (h) XY-multicast Dir-vec (1, 0 | 0), (0, 1 | 0). (i) X-systolic-Y-multicast Dir-vec (1, 0 | 1), (0, 1 | 0). (j) Y-systolic-
X-multicast Dir-vec (0, 1 | 1), (1, 0 | 0). (k) X-multicast-stationary Dir-vec (1, 0 | 0), (0, 0 | 1). (1) Y-multicast-stationary Dir-vec (0, 1 | 0), (0, 0 | 1).
(m) Diag-multicast-stationary. Dir-vec (1, 1 | 0), (0, 0 | 1). (n) XY-multicast-stationary. Dir-vec (1, 0 | 0), (0, 1 | 0), (0, 0 | 1).

but different time-stamps. The first dimension of the entry
time-stamp is 0, resulting in reduced memory requirements as
tensor B remains static in the PE register until the second TD
t2 changes.

In Fig. 3(c), we provide the data layout of both tensors A
and B with the spatial distribution of entries

LEst→DA = {(E(x, 0) | T(t1, t2)) → A(t1, x)}
LEst→DB = {(E(x, y) | T(0, t2)) → B(x, 2 · t2 + y)}.

Note that, the access entry IR only tells there is a data accessed
from entry to PE and its access direction. By composing it
with data layout IR, we can exactly figure out what exactly
this data is. For example, the data used by entry (0, 0 | 1, 0)

is A(1, 0). Moreover, by analyzing which dimension of tensor
A is mapped to the space-stamp or the time-stamp, we can
know the arrangement of tensor elements in the memory, and
its access sequence.

IV. DATAFLOW DESIGN SPACE EXPLORATION

For a given dataflow, we can specify one of them and
calculate another according to (8). Or, we can specify both
to compose the complete dataflow. Therefore, we can form
the access entry space and data layout space separately. The
access entry space is formed as a linear space that consists
of multiple linear combinations of access direction vectors
(Section IV-A). The data layout space enumerates all possible
linear transformations that map spacetime-stamps to the tensor
domain (Section IV-B).

A. Access Entry Space

We assume that data are always accessed linearly, thus, the
access entry can be formulated as a linear combination of
base vectors. For example, access patterns like A[ai + j] are
considered linear while A[i2] is nonlinear and not supported by
our model. From an architectural perspective, the base vector
equals to direction vector (dir-vec) �r that indicates the direction
of how tensor elements are accessed across spatial dimension
and TD. For a given access entry, its direction vectors �r all
satisfy MDst→DA(�r) = 0. Inversely, we can derive a unique
access entry from a set of direction vectors. According to
the former assumption, the reuse direction vector is a triple
(x, y | t). In this manner, there are 7 basic direction vectors in
total

X-systolic: (1, 0 | 1) Y-systolic: (0, 1 | 1) Stationary: (0, 0 | 1)

X-multicast: (1, 0 | 0) Y-multicast: (0, 1 | 0)

Diag-systolic: (1, 1 | 1) Diag-multicast: (1, 1 | 0).

As these vectors form a 3-D space at most, the number
of direction vectors for a specific access entry is up to 3.
The number of all possible direction vector combinations is
C1

7 + C2
7 + C3

7 = 63. After removing the repeated linear space
and symmetric linear space, there are only 14 access entry
types. Fig. 4 lists all of them on a 2D-PE array. Fig. 4(a)–(c)
are systolic patterns with horizontal, vertical and diagonal
(slope = 1) data transfer. In Fig. 4(d), the first dimension of
time-stamp is 0, representing each PE keeps the tensor element
stationary for a while. Fig. 4(e)–(g) are multicast networks
where entries spatially distribute like a 1D-vector. The last six
access entries in Fig. 4(i)–(n) are hybrid patterns.
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Fig. 5. Data layout space on 2D-PE array. The space is formulated as linear matrix transformation. (a) Original. (b) Swap x and t1. (c) Add (–x) to t1.
(d) Swap and add.

Note that Fig. 4 only depicts the cases of input access
entry. By reversing the access direction, it can also be applied
to output access entry. For example, multicast access entry
means the partial sums are generated simultaneously, while
systolic access entry means the partial sums are generated in
continuous cycles.

B. Data Layout Space

Our target architecture reads data from on-chip SRAM
buffers into the PE array, with the data layout space being
dependent on both the application (tensor domain) and the
architecture (entry spacetime domain). We apply linear matrix
transformation when forming its space. Mathematically, there
are only three basic transformations: 1) swap two rows; 2) add
one row to another; and 3) multiply a row by a factor. The
third one only occurs in quasi-affine transformation. e.g., in
Fig. 3(c), the data layout of tensor B has a coefficiency of 2.
Due to the smaller size of the PE array (2 × 2) compared to
the size of tensor B (2×4), the second dimension of tensor B
needs to be tiled (i.e., is cut into smaller blocks, resulting in a
size of 2×2×2). The tensor access behavior mainly depends
on the first two transformations. Fig. 5 depicts how the linear
transformation affects the data layout. Fig. 5(b) swaps the
order of spatial dimension x and the innermost TD t1 when
mapping the indices in Est to the indices in DA. Compared
to Fig. 5(a), it acts like a transposition when tensor A is a
matrix. In Fig. 5(c), we add (−x) to t1 in Est and map it to
DA, leading to data skewing.

C. Entire Space Formation and Space Pruning

Both spaces are linear transformation spaces formed via
linear algebra. The difference lies in that the space of access
entry is formulated by direction vectors, which essentially
are the basis vectors in the complementary linear space. To
find out the correct access entry during decomposition, we
only need to test direction vectors and select the vectors
that satisfy MDst→DA(�r) = 0. For example, we only need
to test the 7 direction vectors for a 2D-PE array, and it is
15 for a 3D-PE array. Besides, the architectural constraint,
like interconnection topology, will affect the choice of these
vectors during dataflow exploration. On the other hand, the
space of data layout is formulated by a linear transformation.
The space is determined by both PE dimensions and tensor
dimensions. For example, assuming that we only apply linear
transformation in two dimensions, then, the data layout num-
ber of a 4D-tensor is C2

4 × 4 = 24, where 4 means the four
types in Fig. 5.

By separately constructing the subspace of each IR, the
total design space is dramatically reduced. We establish
the performance model for memories and bandwidths using
methods similar to TENET [39]. We observe that employing
a simple branch-and-prune algorithm is sufficient to search
the entire design space within a reasonable time. Besides, we
also propose three general pruning strategies to further reduce
the overall space. The first one prunes the point that involves
nonfull-rank mapping from the entry spacetime domain to the
dataflow spacetime domain. A nonfull-rank mapping leads to
multiple data mapping to one entry point at one cycle. After
selecting the IRs of input tensors, we can obtain the movement
of output tensor. The second pruning strategy prunes the points
with wrong output results. The wrong output is due to the
unmatched tensor movement, specifically, unmatched access
entry or data layout. Similarly, the last pruning strategy will
check whether the final dataflow meets the full-rank constraint.

V. DATAFLOW IMPLEMENTATION

A. PE Architecture Implementation

As mentioned in Section III-A, access entry IR describes
the spatial location of entry points for data transfer between
tensor and PE, where each entry point corresponds to one
memory bank. The time information in access entry IR implies
the data transfer direction, which further determines the
PE interconnection topology. Fig. 6(a) shows the PE micro-
architecture of different types of access entry. Multicast entries
require broadcast wires between memory and PEs, without
inter-PE connections. These entries feature large fan-in or
fan-out but low-pipeline latency. On the other hand, systolic
entries have the minimum fan-in or fan-out but have longer
latency to deliver data to all PEs. Using the stationary entry,
each PE loads data individually from different addresses,
thus exhibiting no interconnection. The architecture of the
reduction module is determined by the output access entry IR.
For example, the systolic entry only loads one result at each
cycle, and accumulates them via an adder array. The output
stationary entry updates iteratively in a local register.

B. Memory Implementation

As shown in Fig. 6(b), data layout IR directly deter-
mines the memory hierarchy and tensor data layout. Clearly,
this IR is responsible for partitioning tensors to differ-
ent banks and generating the address of each bank. The
memory hierarchy is modeled as multidimensional times-
tamps. In this model, the innermost TDs intricately depict
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Fig. 6. Architecture implementation using Rubick IRs. (a) Access entry IR-based hardware optimizations. (b) Data layout IR-based hardware optimizations.
(c) Hardware generation using Rubick IRs.

the behavior of on-chip memory, while the outer dimensions
aptly capture the memory behavior exhibited by DRAM or
host memory. For example, we can label the time-stamp
as (T(PE register file), T(on-chip SRAM), and T(off-chip DRAM)).
Based on the tensor index range, we can get the range of
each time-stamp, which further determines the memory size. In
our experiments, we provide the optimization of intermediate
buffer size for multikernel applications.

C. Hardware Generation

As Rubick IRs explicitly expose implementation details,
we develop an automatic hardware generation tool using
Chisel [3] templates, as shown in Fig. 6(c). The generator
takes tensor computation expressions specified by index range
as inputs and generates a complete hardware design. First,
it decomposes the dataflow into IRs. The dataflow can be
specified by the user or searched from the design space. Then,
we can generate the datapath logic based on access entry
IRs, which have two sets of different templates, depending
on whether the tensor is input or output. Note that IRs can
also be specified by users. Finally, the data layout IRs help
to generate the memory modules and address generators for
data control and data transfer. The index range determines the
range of time-stamps, which further determines the memory
size. Furthermore, our hardware generator is modular and can
be extended for different spatial architecture designs.

VI. EXPERIMENT

This section evaluates Rubick. In Section VI-A, we
present the experimental settings, including benchmarks and
implementation. Section VI-B presents the analysis results
of various dataflow using our decomposition methodology.
Sections VI-C and VI-D provide the exploration results of
access entry IR and data layout IR, respectively, including
the evaluation of tradeoffs between latency, fan-in/fan-out, and
memory size. In Section VI-E, we compare the DSE explo-
ration efficiency with the state-of-the-art modeling framework
TENET [39]. Finally, we show the implementation results on
ASIC (Sections VI-F and VI-G) to demonstrate that Rubick
can perform various architectural optimizations.

A. Experiment Setup

Benchmarks: We evaluate the following benchmarks:

GEMM Y(i, j)+ = A(i, k)B(k, j)

2D-CONV Y(n, k, ox, oy)+ = A(k, c, rx, ry)B(n, c, ox + rx, oy + ry)

MMc Y(i, j)+ = A(i, k)B(k, l)C(l, j)

MTTKRP Y(i, j)+ = A(i, k, l)B(k, j)C(l, j). (10)

GEMM and 2D-CONV are single kernels, which are widely
used in deep learning and scientific computing [1], [2],
[27], [62]. matrix multiplication chain (MMc) is used in the
attention mechanism of transformer models [12], [34], [57].
Matricized tensor times Khatri–Rao product (MTTKRP) ten-
sor operation is the bottleneck operation in tensor factorization
(e.g., recommender systems) [4], [44].

Implementation: Rubick support two implementation back-
ends, including ASIC and FPGA platform. We use Chisel
cycle-accurate simulator to evaluate the performance. We
apply Chisel compiler [3] to generate Verilog RTL. For ASIC
implementation, we use Synopsys Design Compiler to estimate
the area and energy of under the UMC 55-nm technology. For
FPGA platform, we then use Xilinx Vivado to synthesize the
bitstream for FPGA implementation. Empirically, we assign
the first two TDs of data layout IR to on-chip BRAMs, with
the rest scheduled to off-chip DRAM.

B. Dataflow Analysis via Decomposition

For the GEMM benchmark, we use Rubick to ana-
lyze two popular dataflows that applied in TPU [23] and
OuterSpace [48]. We visualize the dataflow decomposition of
each tensor, and analyze the architecture implementation, as
shown in Table I. According to the access entry of GEMM-(a)
dataflow, we can clearly know that both two input tensors are
stored in 1-D banks, and each PE is responsible for a different
output element. We can also understand how to schedule the
data according to the data layout. Clearly, two input tensors
are accessed with skewing from memory to PEs, while each
output element is kept in the PE register until the second TD
t2 changes. The access entry of TPU dataflow indicates that
the architecture requires downward accumulators to gather the
results and store them to memory via the bottom PEs. The
data layout tells that tensor A and output are skewed when
scheduling, while tensor B is kept stationary in the PE.

2D-CONV is a much more complex tensor benchmark that
involves six loops. We present the decomposition of one com-
mon 2D-CONV dataflow and two dataflows found by Rubick,
which minimizes the number of memory ports. 2D-CONV
(a) dataflow is applied in DianNao [6] and NVDLA [47],
leveraging the parallelism in the k and c dimensions that show
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TABLE I
DATAFLOW DECOMPOSITION VISUALIZATION. ALL DATAFLOWS ARE MODELED ON A 8 × 8 PE ARRAY. IN THE ACCESS ENTRY, A-(A) MEANS TENSOR

A IS ACCESS IN TYPE-(A) PATTERN OF FIG. 4. IN THE DATA LAYOUT, WE ONLY PICTURE FOUR TENSOR ELEMENTS FOR SIMPLICITY. DIFFERENT

COLOR REPRESENTS DIFFERENT TENSOR. YELLOW: TENSOR A. BLUE: TENSOR B. GREEN: TENSOR Y

less data dependency. This dataflow requires 8 memory ports
in total where tensor B is vertically broadcast to PEs. Different
from GEMM-(b), the output access entry of 2D-CONV
(a) indicates that multiplication results are generated simulta-
neously, which means there needs an adder tree to gather the
results. To minimize the port number of tensor B, 2D-CONV
(b) dataflow specifies tensor B access entry as a scalar (type
(j): Y-systolic-X-multicast in Fig. 4). Consequently, the data
layout of tensor B is expanded only in TDs (x==0, y==0).
While 2D-CONV (c) dataflow tries to adopt systolic entry or
multicast entry for all tensors to minimize the port number.
To this end, the PE array is transformed to parallelogram
shape where tensor A is diagonally broadcast to PEs and kept
stationary, and results are downward accumulated. We also
observe that the data layout of tensor B is skewed to match
the parallelogram PE array.

C. Access Entry IR-Based Exploration

As mentioned in Section III-A, the access entry describes
the memory ports and PE interconnection, which further deter-
mines the required scratchpad bandwidth. Therefore, Rubick
can be used to explore various tradeoffs among different
hardware implementations by analyzing the access entry of the
dataflows, e.g., the tradeoff between latency and fan-in/fan-out,

Fig. 7. Using Rubick access entry IRs to explore hardware design. a-g means
the access entry type in Fig. 4.

latency and memory size, and fan-in/fan-out and bandwidth
requirement.

Fig. 7 illustrates the tradeoff between latency and fan-in/fan-
out, where each data point represents a complete dataflow of
GEMM with a shape of 64 × 64 × 64. The axis means different
access entry choices, while the color of points represents the
latency on the left of Fig. 7 (the darker the longer latency), and
represents the fan-in/fan-out wires in the right of Fig. 7 (the
darker the more fan-in/fan-out), respectively. The dataflows in
group I require fewer wire resources, but show the longest
latency, as most tensors apply type-(a) or type-(b) access entry
(refer to Fig. 4). These two types show systolic movements,
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Fig. 8. Using Rubick data layout IRs to explore hardware design.
rx, ry, ox, oy, k, and c are tensor indices in (10).

which need fewer memory ports but take more cycles to
load/store input/output data. The dataflows in group III mainly
feature multicast access entry types, which leads to lower
latency but higher-fan-in/fan-out requirements due to more
wires connected with the scratchpad. The dataflows in group
II are hybrids of group I and III. Overall, Rubick allows users
to make a tradeoff between wire resources and latency. For
example, group I can reduce 82.4% wire resources compared
to group III, with only 2.7% latency increase.

D. Data Layout IR-Based Exploration

Fig. 8 illustrates the tradeoff between latency and memory
size by analyzing the data layout in 2-DConv. The input has
a shape of 256 × 64 × 64, and the kernel has a shape of
256 × 256 × 8 × 8. Here, we refer memory as the on-chip
scratchpad that stores a tile of data for inner-most time-stamp
t1. Each group here may involve multiple dataflows depending
on the linear transformation between t1 and tensor indices.
In group I, the data layout maps the TD to smaller tensors,
which has longer latency but requires less memory (e.g., map
rx, ry to t1). Inversely, the dataflows in group III need more
memory but show lower latency. The lowest-latency point in
group II can reduce 67.8% memory compared to the lowest-
latency point in group III.

Previously, we assume that only the first TD of data layout
IR is assigned to the on-chip memory. Fig. 9(a) shows the
tradeoff between buffer size and bandwidth when assigning
multiple TDs. As a result, more on-chip TDs lead to a
larger buffer size. However, it does not necessarily reduce the
bandwidth requirement, depending on whether the dimension
provides the data reuse opportunities. For example, 2TD and
3TD cases of TPU have the same bandwidth requirement. This
can be explained by the fact that the third TD is mapped to
the k tensor dimension (GEMM-(b) in Table I), which is a
reduction dimension that contributes no reuse.

The tensor index range determines the time range in the
data layout IR, which affects the required buffer size and PE
utilization. We evaluate different shapes using NVDLA [47]
2-DCONV dataflow (2DCONV-(a) in Table I) on VGG
network [61], as shown in Fig. 9(b). As shown in the NVDLA
dataflow in Table I, the range of inner TDs (ox, oy) reduces
when the network goes deeper, which causes the required
buffer size to decrease. The utilization of CONV1_1 layer is

Fig. 9. Analyzing the tradeoff between buffer size, bandwidth, and PE
utilization using data layout IR. (a) Analysis on assigning different time-
stamps. (b) Analysis on different tensor shapes.

Fig. 10. Exploration-efficiency improved by Rubick. (a) Exploration time
comparison. (b) Search-efficiency improvement.

low due to the small input channel size (c = 3), resulting
in low-PE utilization. For GEMM case, OuterSpace [48]
dataflow (GEMM-(a) in Table I) adopts outer-product paral-
lelism. Therefore, the I = 4 case cannot fully utilizes the
PE array. The K = 4 case has less reuse opportunities, thus
causing high-transfer cost and PE array under utilized.

E. Exploration Comparison With TENET

Fig. 10(b) presents the breakdown exploration efficiency
for 2DCONV. Since the loop boundary is usually larger than
the PE array size, the original six loops are tiled into eight
loops with two mapped to the PE array. The space of TENET
is huge with many inferior dataflows. We reduce this space
dramatically because we separately form the subspace of each
IR and then compose them together. The initial Rubick space
is 6 773 760 (196 points in access entry space, 34 560 points
in data layout space). The three pruning strategies furthers
prunes the space. Clearly, pruning strategies 1 and 3 achieve
4.32X and 20.5X space reduction by pruning nonfull-rank
cases, respectively; pruning strategy 2 leads to 3.62X reduction
by removing the wrong output cases.

Mathematically, each dataflow in TENET space can be
uniquely decomposed into access entry and data layout. While
the inferior dataflows involve inefficient data layouts that
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Fig. 11. TENET inferior dataflow with under-utilized PE.

TABLE II
DATA LAYOUT IR OF DIFFERENT DESIGN

underutilize the PE array

�DS→Dst = {S(i, j, k) → PE(i + j, i + k) | T(j + k)}.
For example, the above dataflow leads to diagonal-interleaved
PE utilization as shown in Fig. 11. According to our dataflow
decomposition methodology, such under-utilization results
from inferior data layout that has fractional coefficiency, as
follows:

LEst→DA = {(E(x, 0) | T(t)) → A(0.5x − 0.5t, 0.5x + 0.5t)}.
However, Rubick effectively prunes these cases when forming
the data layout IR space.

F. Multikernel Implementation on ASIC

Real-world tensor applications often involve multiple depen-
dent kernels. For example, 3 × 3 CONV layers followed by
1 × 1 CONV layers are widely used in convolutional neural
networks (CNNs), such as ResNet [35] and GoogleNet [65].
Prior accelerator designs usually process these kernels sequen-
tially and consecutive layers use different data layouts for
output and input. This leads to a large buffer or DRAM
to cache the intermediate results. The architectural details
exposed by Rubick allow us to optimize the buffer size by
using similar data layout IRs for multikernel dataflows.

Fig. 12 compares buffer sizes, where SCONV+PCONV
representing spatial convolution and pointwise convolution,
respectively. Rubick achieves 49X and 8X reduction compared
to NVDLA and ShiDiannao for the first case, respectively. It
achieves 5.6X reduction compared to NVDLA for the second
case and 64X reduction compared to TPU for the last case.
Table II provides the analysis results using Rubick data layout
IR. Shi-Diannao [13] maps the same tensor dimension to
different time-stamps. In the output layout, the first tensor

Fig. 12. Data layout IR optimization for multikernel.

Fig. 13. Area and power breakdown via GEMM dataflow decomposition.
The X-axis is different dataflows notated by access entry, e.g., (bda) means,
tensor A, B, Y applies type-(a), type-(d), and type-(b) access entry of Fig. 4.

dimension is mapped to an outer time-stamp t4, while in
the input layout, it is mapped to the innermost time-stamp
t1. As a result, the tensor data in the first dimension needs
to be buffered across multiple iterations, leading to large
intermediate buffer size. Though TPU [23] shows the same
buffer size as Rubick in CONV+FC benchmark, it requires
a transposition operation for data rearrangement due to the
different space-stamps between their output and input layout,
with one indexed by E(x, 0| · · · ) and the other E(0, y| · · · ).
Thus, it needs to reload the tile, resulting in the loss of
the benefit gained from fusing two kernels, which leads to
an increase in both data movement power consumption and
computation time.

G. Area and Power Analysis on ASIC

In this section, we generate the design from our hard-
ware generator and synthesize the RTL code to evaluate
the tradeoff between area and power. Fig. 13(a) presents the
area breakdown of various GEMM dataflows on an 8 × 8
PE array with 16-bit integer arithmetic. The memory area
is obtained from UMC 55-nm SRAM library. We consider
the minimum memory size that only stores the data required
in the first time-stamp of data layout IR. We observe that
the output access entry accounts for the most area as it
needs to implement reduction operations (e.g., adder tree and
accumulators). Dataflows with multicast entries type-(e), type-
(f), or type-(g) (refer to Fig. 4) require less area as they
only need wires to broadcast data. While systolic entries are
implemented using FIFOs with control logic. In Fig. 13(b),
the memory power is negligible due to the small PE array size.
We observe that multicast entries require more energy due to
their large fan-out. Stationary entries type-(d) are the most
energy-saving one as their registers are idle in most cycles.

Based on the presynthesized results of each IR, Rubick can
accurately estimate the area and power of a complete design.
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TABLE III
FPGA PERFORMANCE COMPARISON

We estimate area and power by separately synthesizing the
modules implementing each kind of access entry and adding
them together. The golden result is acquired by synthesizing
the complete design. Compared to the golden synthesis results,
Rubick achieves an accuracy of 91.96% and 91.09% for area
and power. For TPU [23] dataflow, Rubick is 91.27% and
92.69% accurate for area and power, while the accuracy of
TENET is only 60.22% and 88.79%. This is because TENET
relies on simple polynomials of its high-level metrics (Reuse
Volume) to estimates area and power, while Rubick relies on
low-level IRs with accurate architectural details.

H. FPGA Implementation

Table III compares the FPGA performance of Rubick with
AutoSA [68], TensorLib [21], and EMS [22] on 2D-CONV.
We select the late layers on VGG-19 [61] with FP32 precision
as the test bench. We limit the access entry space to suit the
features of FPGAs to search for better dataflows. We remove
all access entries with a multicast direction vector for the
input tensors due to the limited routing resource and improve
the frequency by 10.6%. We select the X-multicast access
entry for the output tensor (i.e., adder trees) to avoid data
interleaving, which saves BRAM by 5X since only one tile
needs to be processed at a time. Rubick also optimized the
hardware generation flow. LUT and DSP are further optimized
as we can fully analyze the data movement thus simplifying
the control logic by avoiding handshaking and additional
FIFOs. Overall, we improved the peak performance by 12%
and 49%, compared against AutoSA [68] and EMS-WS [22],
respectively.

VII. RELATED WORKS

Dataflow Modeling: Dataflow modeling can provide general
guidelines and insights for optimizing the dataflow. Prior
dataflow models mainly focus on tensor applications on spatial
architectures [8], [11], [20], [29], [30], [36], [39], [40], [49],
[52], [71], [72]. A few of them propose dataflow notations
to precisely describe how the instance is executed [11],
[20], [29], [30], [39], [49], [71]. For example, TENET [39]
proposes relation-centric notation that regards the dataflow as
a mapping function between iteration domain and hardware.
In [11], dataflow is annotated using two hyperplanes with
the polyhedral dependency graph. Kwon et al. [29], [30]
proposed a data-centric notation to specify the data distri-
bution in spatial dimensions and TDs. Timeloop [49] and
Interstellar [71] annotates dataflow using loop nest with some
hardware directives. For example, Timeloop [49] introduces
mapping directives for memory hierarchy and PE workload
assignment. While Interstellar [71] extends Halide [58] with

additional control directives, e.g., loop blocking and
resource allocation, for specifying the hardware fea-
tures. CoSA [20] uses a binary matrix to represent the spatial
and temporal mapping. However, it only aims at DNN and
the solver-based approach does not support varied dataflows
that apply linear transformation between different dimensions.
There are also prior works aiming at modeling the spatial
architecture for general applications [36], [46], [52].

Spatial Architecture Generation: Spatial architectures
require extensive manual effort to design the hardware mod-
ules. Therefore, many recent works propose generation tools
to automatically design the architecture [10], [15], [26], [33],
[53], [60], [68], [69]. DSAGEN [69] is a framework that
applies a hardware/software co-design approach for generating
reconfigurable architectures. DSAGEN proposes a compilation
flow with a design space exploration algorithm based on
modular architecture components. Spatial [26] is a domain-
specific language for spatial accelerators, which provides
hardware-specific abstractions for control, memory, and design
tuning. μIR is an IR for describing the micro-architecture of
spatial accelerators [60]. It decouples the architecture from the
algorithm and is translated to Chisel for hardware generation.
These works act like black boxes that transform the dataflow
into IRs to generate architecture, however, make it difficult
for users to interpret the relationship between dataflow and
architecture.

VIII. CONCLUSION

In this work, we propose an infrastructure for analyz-
ing, exploring, and implementing the architecture of spatial
dataflows. Our dataflow decomposition features two IRs access
entry and data layout, which formally and systematically
provide the implementation details of spatial architecture. We
also propose an efficient exploration approach by separately
forming the subspace of these two IRs. Finally, Rubick
enables various low-level implementation optimizations, and
accelerates the DSE time of dataflows by up to 1.1 × 105X,
saving the time from days to minutes.
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