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QuST: Optimizing Quantum Neural Network
Against Spatial and Temporal Noise Biases
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Abstract—Quantum neural networks (QNNs) hold immense
potential for complex tasks by harnessing quantum entanglement
and superposition, such as physics simulation, artificial intel-
ligence, and cryptography. However, the presence of quantum
noise, stemming from hardware imperfections and environmental
interactions, significantly reduces their practical performance.
Moreover, the noise varies from different devices and shifts over
time, necessitating continuous retraining models to chase and
cater to the evolving noise, leading to high-computation costs.
In this article, we present QuST, a novel QNN robust training
framework designed to handle the noise in a once-and-for-all
manner, which can tackle both spatial and temporal biases to
maintain the QNN model accuracy under ever-changing noise
conditions. Our approach consists of three key components. First,
we propose a metric called circuit sequence correctness (CSC)
to characterize QNN circuit reliability in noisy environments.
Then, we model CSC as a training weight to incorporate loss
integration and utilize KL divergence to align noise inference with
noise-free inference, thereby improving anti-noise capabilities.
Furthermore, we introduce multiscale noise-aware training to
enhance the model’s noise tolerance at various noise magnitudes.
We conduct experiments on MNIST and fashion-MNIST datasets,
along with 190-day historical noise simulations and one case
study on 7 real IBMQ quantum computers. The results demon-
strate 8.1%-15.1% and 9.1%-11.45% accuracy improvements in
temporal and spatial dimensions, respectively. Additionally, we
conduct ablation experiments to validate the effectiveness of the
QuST’s key components. The results demonstrate that QuST
consistently sustains high accuracy without retraining,even under
changing noise conditions, and exhibits minimal loss of accuracy
as noise levels increase.

Index Terms—Noise-resilient model, quantum computing,
quantum neural networks (QNNs).

I. INTRODUCTION

ITH the development of quantum computing, quantum
Wneural network (QNN) serves as the intersection of
quantum computing and artificial intelligence, which has
attracted much attention in recent years. QNN mainly consists
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Fig. 1. Noise visualization [17] of readout and gate errors.

of parameterized quantum gates to constitute circuits across
various fields, such as quantum chemistry [1], quantum natural
language processing [2], and quantum adversarial learning [3].
Quantum computing is considered promising to accelerate
classical tasks through quantum superposition and entan-
glement to perform calculations [3], [4], [5]. Similar to the
classical neural networks, the constructed QNN model needs
to be trained with embedded data to handle specific machine
learning tasks on a quantum computer (QC). However,
QCs are currently in the noisy intermediate-scale quan-
tum (NISQ) era [6], wherein quantum operations and qubit
states are susceptible to quantum noise, leading to imprecise
calculations.

Quantum noise poses a significant challenge to the
practicability of quantum computing. Therefore, researchers
have proposed several methods to alleviate the quantum
noise, including quantum error correction [7], quantum error
mitigation [8], [9], [10], [11], quantum compiler optimiza-
tions [12], [13], etc. For the domain of QNN error mitigation,
EQC [14] employs distributed training, QuCAD [15] and
PCOAST [16] compresses circuit gates based on noise
configurations, and QuantumNAT [4] injects noise and post-
measurement normalization during QNN training to improve
performance in specific noise environments. However, when
confronted with noise variations, conventional approaches
often involve retraining to adjust to the new noise rather
than fundamentally aiming to train a robust model capable
of resisting evolving noise environments, which is time-
consuming and labor-intensive. For training a robust model
that can be adapted to changing noise in a once-and-for-all
manner, we summarize the following three primary challenges.
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1) Quantum Noise Exhibits Variations Across Different
Times and Devices: Quantum noise is not set in stone.
For one thing, the noise presentation of various quantum
devices is different depending on quantum fabrication
technology, intrinsic qubit changes, environmental con-
ditions, and so on. For another, even for the same
quantum device, the quantum noise exhibits diversity
over time because of the interaction with the environ-
ment. We term them spatial bias and temporal bias,
respectively. In Fig. 1, we visualize the quantum noise
of two IBMQ computers across four days based on
VACSEN [17], the probability of readout and gate
errors vary with different times and devices. Although
practitioners regularly adjust parameters to calibrate
machines, noise cannot be eliminated and often shows
a random distribution in a certain interval. Specifically,
in Fig. 2(a), we randomly selected 10 days to test on
IBMQ Quito to execute MNIST-4, noise fluctuations
over time lead to variation in fidelity. This results in
a maximum reduction of 30% in QNN accuracy, we
refer to this time-related variation as femporal bias. In
Fig. 2(b), we deploy the same QNN model on four
devices to test Fashion-4, “D1-D4” are denoted as
IBMQ Quito, Lima, Belem, and Manila, respectively.
The results reveal fidelity changes due to varying noise,
and the model’s accuracy is reduced by up to 14%, we
characterize this noise variation across devices as spatial
bias.

2) Existing Metrics Cannot Accurately Characterize the
ONN Model Performance Under Noisy Environments:
For example, we provide a specific case in Fig. 2,
conventional noise characterization metrics fidelity [18]
does not exhibit a consistently positive correlation with
the QNN model accuracy, such as Fig. 2(a) the fidelity
is 0.95 and 0.981, while accuracy is 0.77 and 0.73
corresponding to 77 and 73. Through performance
evaluation and Fidelity calculation with sampling 10
days, we observe that model accuracy and fidelity do
not show a good positive correlation. Especially in
subgraph b), the relationship between accuracy and
fidelity exhibits a low correlation (refer to the changing
trend of the two curves). Therefore, we need a metric
that accurately profiles the QNN accuracy in various
noisy environments.

3) Traditional Training Methods Cannot Effectively Deal
With the Diversity of Noise: To resist noise, a strawman
design would be to continuously retrain a set of QNN
model parameters to adapt to new noise instances.
However, this approach is neither efficient nor practical,
as noise is unpredictable and constantly changing, as
mentioned in the challenge 1). Therefore, instead of
continually adapting to the evolving noise environment,
we aim to develop noise-resilient QNNs that exhibit
robustness against noise in a once-and-for-all manner.

To cope with these issues, we introduce QuST, a novel

framework for optimizing QNNs against spatial and temporal
noise biases. Specifically, we propose a novel metric to
depict the circuit sequence correctness (CSC) under noisy

1435

A
Fidelit

A A
0.0 JACC 100 0.9 JACC Fidelit] ; oo
14%)
Lo.98 0.8{ 1 L 0.98
L 0.96 0.7 L 0.96

r0.94 0.6 A r0.94
.Accuracy
O Fidelity L 0.92 5 O Fidelity |
T2 T4 T6 T8 TI10 D1D2D3D4

Evaluation Time Quantumeevice
a

Fig. 2. Evaluate fidelity and QNN accuracy across temporal and spatial
biases: (a) Assess the model at different times on IBMQ Quito and (b) evaluate
the model across different devices.

environments, which aims to quantize the effect of circuit
errors on QNN performance, echo back challenge 2). Then,
we design a suite of training pipelines for QUST, including
noise-free/aware circuit execution, utilizing CSC as weight
coefficient, and multiscale noise-aware training to cater to
challenge 3). Through such a training process, we could realize
the fault-tolerant QNN model against noise, even if there are
spatial and temporal biases, to cope with the challenge 1).
Overall, this article makes three key contributions.

1) We carefully examine and analyze the effect that
quantum noise brings for QNN models in practice,
identifying two key problems: a) “spatial bias” for noise
variations across devices and b) “temporal bias” for
noise variations over time.

2) We propose QuST, a novel framework consisting of a
suite of training pipelines to cope with ever-changing
noises.We also propose CSC, a new noise evaluation
metric that addresses the shortcomings of existing met-
rics in describing QNN performance.

3) We conduct experiments on three circuits and two
datasets, using 190-day historical noise from seven
IBMQ QCs. Results show that QuST significantly out-
performs existing methods against ever-changing noises
without retraining, maintaining its effectiveness across
temporal and spatial noise variations. We also perform
ablation experiments to verify the effectiveness, stability,
and scalability of QuUST.

II. BACKGROUND AND RELATED WORK
A. Quantum Neural Networks

Classical neural networks are algorithmic models inspired
by the human brain, capable of being trained to recognize pat-
terns in data and solve complex problems [19]. Representative
structures consist of a series of interconnected nodes (neurons)
arranged in a layered structure. These networks learn by
adjusting their parameters through machine learning or deep
learning training strategies [20]. In classical neural networks,
the input and output are represented as neurons and the
connections between these neurons are defined by weights that
require training. In contrast, QNNs combine quantum comput-
ing with classical neural networks based on the principles of
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Fig. 3. QNN model architecture for MNIST classification task. (a) Encoding.
(b) Trainable quantum circuit. (¢) Measurement.

quantum mechanics [21]. The concept of QNN first appeared
in publications by Subhash in 1995 [22], motivated by the
desire to connect investigations in the field of neuroscience
with the characteristics of quantum computation. QNNs typ-
ically refer to variational or parameterized quantum circuits,
which are mostly composed of a series of parameterized gates
stacked together. The specific structure is shown in Fig. 3.
QNNs utilize qubit states for input and output, with weights
corresponding to quantum gate parameters within the quantum
circuit. Each gate parameter represents a qubit operation based
on principles of quantum mechanics.

In Fig. 3, the QNN model comprises a) quantum encoding,
b) trainable quantum circuit, and ¢) measurement, forming
a cascade of quantum operations. Encoding maps data (e.g.,
classical data) to quantum states, the trainable quantum circuit
applies gate operations' on qubits, and the circuit’s output
is obtained through measurement. Model inference results
are derived using the Softmax function. During training,
gate parameters of the trainable quantum circuit are updated
iteratively through loss function computation and backprop-
agation. QNN models are used for various tasks, such as
QuantumNAT [4] and QOC [23] for image classification,
QSAN [2] for natural language processing, and QGAN [3] for
generative adversarial networks.

B. Quantum Noises

Current NISQ quantum devices are susceptible to various
noise sources [24], such as thermal fluctuations, elec-
tromagnetic interference, imperfections in quantum gates,
and environmental interactions [25], [26], [27]. These factors
cause fluctuations in qubit phase and amplitude, ultimately
hindering qubit accuracy and reliability improvements. We
can model these quantum noises” that affect the calculation
accuracy of QCs into two categories.

1) Readout errors, often consist of state preparation and

measurement (SPAM) errors [14] that would arise
due to imperfect state preparation and quantum state

1Gate operations like the quantum gate Ry(61) in Fig. 3(b), meaning they
rotate the 01 angle across the y-axis. These gate parameters can be trained.

20ur noise modeling aligns with Qiskit [21], incorporating device param-
eters, calibration data, gate times, and so on. Specifically, device parameters
include qubits frequency and temperature, and device calibration data includes
the gate infidelity, readout error, and 77, 7> relaxation time. These various
noise sources are abstracted into local error channels: readout error, depo-
larizing error, and thermal relaxation error. These error channels are then
integrated into the readout error model and gate error model. The above
noise modeling process considers each qubit’s coherence times (77 and 7»),
operating frequency, and readout error rate. These noise models are simplified
approximations of the actual dynamics of a QC.
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measurement processes. These errors can result in dis-
crepancies between the intended states |0) and |1),
causing incorrect distinctions between these fundamental
states. According to Qiskit [21], readout errors are
applied to all measurements. In simpler terms, errors
during the preparation and measurement of a quantum
state can cause confusion between the binary states |0)
and |1).

2) Gate errors, stemming from hardware and environ-
mental influences, leading to imperfect gate operations,
can summarize into dephasing errors, thermal relaxation
errors, depolarizing errors [28], and so on. Followed by
Qiskit [21], we model single-qubit gate errors consisting
of depolarizing error and thermal relaxation error, the
two-qubit gate errors consisting of a 2-qubit depolarizing
error, and a 1-qubit thermal relaxation error on each pair
of qubits. These errors cause information loss, reduced
coherency, and inaccuracies in quantum computations,
collectively known as gate errors.

For the workflow of QNN, quantum encoding® and circuit
execution are often affected by gate errors, while measure-
ments mainly suffer from readout errors. Furthermore, we
provide mathematical definitions of readout errors and gate
errors for noise modeling in Section III-A.

C. ONNs Noise Mitigation

Considering quantum noise greatly limits the development
of quantum computing superiority, a series of error mitigation
methods [8], [29] have been proposed. Some representative
works involve zero-noise extrapolation (ZNE) [10], proba-
bilistic error cancellation (PEC) [8], quantum error correcting
codes (QECC) [7], [30], etc. These technologies essentially
investigate error mitigation at a high level and are a general and
universal process in the quantum computing field. However,
recognizing the limitations of these approaches within specific
domains, some recent works have turned their attention to
developing noise mitigation schemes specifically tailored for
QNNs. EQC [14] employs distributed training to allocate
quantum tasks across multiple quantum devices to improve the
training speed. QOC [23] proposes probabilistic gradient prun-
ing to identify gradients with potentially large errors and then
remove them. QuCAD [15] uses a compression-aided frame-
work to configure compression circuit gates based on the given
noise to improve QNN accuracy. QuantumNAT [4] uses noise
injection during the QNN training process, post-measurement
normalization, and quantization to optimize measurement,
which enhances performance in a specific noisy environ-
ment and realizes state-the-of-art (SOTA) robustness against
quantum noises. Nonetheless, these methods all encounter a
common challenge in adapting to noise changes over time
and devices. They tend to cope with these biases through
retraining, which is resource-intensive and time-consuming. To
achieve more effective noise mitigation, we propose QUST, a
QNN training framework that enables noise-resilient capability
against spatial and temporal biases in an inline manner.

3Gate-based encoding is primarily affected by gate errors, while amplitude
encoding may be more susceptible to quantum state preparation errors.
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III. QUANTUM NOISE FORMULATION

In this section, we formalize the problems of noise modeling
and noise biases. Specifically, we formulate noise biases into
spatial and temporal biases.

A. Noise Modeling

In Section II-B, following the methodology of Qiskit [21],
we model various noise sources uniformly as the readout error
model and the gate error model.* These noise models can
simulate the dynamic noise characteristics of quantum devices.
The mathematical formulation of noise modeling is as follows.

1) Readout Error Model: Readout error refers to the errors

in qubit SPAM that result in the inability to correctly
prepare or distinguish between the states |0) and |1). It
is also known as SPAM errors [14]. The readout error of
each qubit is represented as a 2 x 2 probability matrix,
such as for the i-qubit readout error matrix R;

Pio 1- Pi,0:| )

Ri:[l—Pu

which means the probability of correctly measuring |0)
is P;o and |1) is P; . In contrast, the probability of
wrongly measuring |0) to |1) is (1 — P; ) and |1) to |0)
is (1 — P;1). For instance, the readout error of the first
qubit can be represented by a 2 x 2 probability matrix,
as follows:

P;

0.9358  0.0642
1= [ } 2

0.0164 0.9836

The probability of correctly measuring |0) is 0.9358
and |1) is 0.9836, and the probability of incorrect
measurement is 0.0642 and 0.0164, respectively. If we
have an ideal output refer to P(0) = 0.4, P(1) = 0.6,
the noisy readout output

P'(0) = 0.4 % 0.9358 + 0.6 % 0.0164 ~ 0.384
P/(1) = 0.4 % 0.0642 + 0.6 % 0.9836 ~ 0.616. (3)

2) Gate Error Model: We unify the modeling of various
noise factors into gate noise, which mainly involves
quantum operation errors stemming from hardware
imperfections, environmental interactions, decoherence,
and other factors, leading to inaccurate execution of
quantum operations, such as insufficient or exces-
sive qubit rotation. For example, a single-qubit gate
error could involve a bit-flip error (Pauli-X), phase-flip
error (Pauli-Z), bit-phase-flip error (Pauli-Y), and reset
error [27]. A two-qubit gate error consists of many sets
of identity crosses with Pauli operators

{X,7, Z, reset}

(IX, IV, 1Z, XI, XX, XY, XZ, YI, YX,
YY, YZ, ZI, ZX, ZY, ZZ, reset}. 4)

1 — g gate error:
2 — g gate error:

4These noise models considered each qubit’s coherence times (7] and 75),
operating frequency, and readout error rate. First, various noise sources
are abstracted into the following three error channels: 1) readout error;
2) depolarizing error; and 3) thermal relaxation error. These error channels
are then integrated into the readout error model and the gate error model.
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Specifically, the process of gate error modeling refers to
first executing the ideal operation and then randomly sampling
from the noise operation set with special error probabilities,
then inserting it after the original ideal gate, i.e., executing
the ideal and sampled noise gates. For example, if the gate
error probability of Pauli-X gate is {*“id”: 0.9986, “y”’: 0.0003,
“z”:0.0007, and “reset”: 0.0004}, where id is an identity gate,
refers to the ideal gate. Next, if the “z” error gate is sampled,
it will execute “Pauli-X+Pauli-Z” gates; if the “reset” error is

sampled, the quantum state will be reset to the initial state.

B. Spatial and Temporal Biases Definitions

Since readout and gate errors are closely related to imperfect
hardware operation and environmental coupling, leading to a
non-Markovian process of random evolution. This stochastic
noise severely damages the accuracy of quantum computation.
Due to the unpredictable nature of noise, practitioners must
regularly conduct quantum noise calibration. However, current
calibration techniques can only mitigate noise to a certain
extent but cannot eliminate it. Following calibration, noise is
adjusted within an acceptable range with its maximum bound-
ary determined, yet its specific distribution and magnitude
remain random. This directly leads to the existence of noise
biases. In practical scenarios, we abstract noise biases into
two types: 1) spatial bias and 2) temporal bias, depicted as
follows.

1) Spatial Bias: For different devices, it is natural to have
noise bias due to the different manufacturing processes,
hardware operational performance, and environmental
coupling. Specifically, for readout error, the probability
matrix varies across different devices and environments.
For gate error, the probability of different flip types
is spatially diverse. Spatial bias refers to this noise
discrepancy on different devices. Formally, consider two
QCs D; and D, their noise profiles are different at the
same time 77, i.e.,

N (D1, Th) # N Dz, T). &)

2) Temporal Bias: The noise bias also exists at different
times for the same quantum device, hence imperfect
calibration processes and non-Moarkovian noise varia-
tions. In other words, for readout error, the probability
matrix varies at different time points. For gate error, the
probability of different flip types is temporally diverse.
Formally, for QCs D1, temporal bias means the noise
presentations are different at 77 and 7>, i.e.,

N (D1, T)) # N (D1, To). (6)

IV. METRIC OF CIRCUIT SEQUENCE CORRECTNESS

To characterize the effect of noise on the execution results of
QNN circuits (to cope with the second challenge in Section I),
we define a novel metric, CSC, which aims to intuitively reflect
the reliability of correct execution of QNN models under
different noise environments. The quantum circuit is composed
of a series of cascades of quantum gate operations, and errors
may occur on each gate operation (due to imperfect physical
manufacturing techniques and environmental interactions).
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all qubits.

So-called CSC refers to the correct probability cumulative
multiplication of the gate operations (e.g., the single-qubit
gate, double-qubit gate, multiqubit gate) according to the cir-
cuit sequence. Given a noise profile AV, that contains specific
gate error probabilities® [31]. Consider a quantum circuit C
operating on n qubits in a noisy environment characterized by
noise profile V,. The CSC formal definition is as follows:

CSC(C.N,) =Y GSC(C. Ny)

i=0

(7

n

where GSC; denotes the sequence of gate correctness of the
ith qubit,® ranging from [0, 1]. Then CSC is the average GSC
of all qubits across the circuit, which is calculated as follows:

len(Gj)
Gsai(e. M) = T (1 —N,,[Gfi]) < (1= N,(R)) ()

j=0
where the qubit g; contains the sequential gate operations
list G;, readout error N, (R;), and gate error J\/,,[G{.]. len(G;)
represents the number of gate operations in G;. To validate
CSC’s effectiveness, we compared the noise evaluation metrics
regarding their correlation with accuracy, detailed in Section VI.
To make the CSC calculation process clearer, we draw the
illustrative explanation in Fig. 4, whose noise profile from
IBMQ Quito on 8 July 2021. On the top part of the figure,
the process (@— @) displays the circuit transpile process [32]
from the virtual circuit to the physical deployable circuit,
to match the quantum chip topology. The transpile process
includes qubit mapping [33], [34], [35], [36], gate decom-
position, physical circuit optimization, etc. Among them,
qubit mapping’ means placing the virtual circuit on physical

SError probabilities, noise profile NV, contains error information for each
gate and measurement for each qubit. For example, Nj[SXp] = 0.000347
refers to the error probability of single-qubit gate SX in ¢gg is 0.0347%,
Np[Rz] = 0.043900 represents the error probability of measurement in ¢ is
4.39%, and N,[CX(1 3)] = 0.010173 means the error probability of double-
qubit gate CX (whose control qubit is ¢ and the target qubit is g3) is 1.0173%.
Noteworthy, the error probability of multiqubit circuits could be asymmetric,
e.g., it is possible that N»[CX(q 3)] # Np[CX(3,1].

SNote that for 1-qubit gates, the fidelity is directly multiplied by the
corresponding qubit’s error rate. For 2-qubit gates, only the error rate of the
qubit involved in the controlled gate is accumulated.

7Qubit mapping will be performed when the physical topology cannot
match the requirements of the virtual circuit. For instance, the virtual circuit
includes a two-qubit gate CX(3, 1), but there is no physical connection between
q1 and g3 on the chip. Then, the SWAP gate will be introduced to exchange the
contents through additional qubits, making it possible to implement CX(3 y-
Hence, efficient qubit mapping minimizes the need for introducing SWAP
gates when implementing the virtual circuit.

Tllustrative explanation of CSC/GSC calculation based on IBMQ Quito.
Then, we calculate the GSC for each qubit under 8 July 2021 noise, plotting in

First, the virtual circuit needs to be transpile (@— ®) to the physical circuit.
each subplot in ®. Finally, calculate the CSC score by averaging the GSC of

qubits to match the chip topology of the QC, e.g., virtual-
to-physical = {1:3,3:2,0:1, 2:0}. Gate decomposition means
translating the virtual circuit into a series of basis gates,
making it executable on the physical device. The basis gates on
IBMQ Quito include {RZ, SX, X, CX}, where SX denotes JX.
Subsequently, we can calculate the CSC (®—®) reference
(7) based on the physical circuit. For the bottom of Fig. 4
shows the GSC for 4 qubits (according to the order after qubit
mapping, i.e., [1, 3, 0, 2]), in which the calculation of each
qubit is independent. We can observe that the GSC gradually
becomes smaller as the circuit depth increases, which means
that deeper circuits tend to be more susceptible to noise.
Specifically, gg has the most gates (maximum depth) and its
GSC is the smallest, which is 0.997917. In this case, the GSC
is 0.997917, 0.998788, 0.999501, and 0.998352 for qo, g1, g2,
and g3, respectively. So the CSC of the circuit is

CSC(C, N,) = (0.997917 + 0.998788 + 0.999501

+ 0.998352) /4 = 0.9986395. )

V. DESIGN OF QUST

Initially, we introduce noise injection and circuit execu-
tion to enhance the model’s awareness of quantum noise.
Subsequently, we leverage CSC to estimate confidence lev-
els under different noise conditions, utilizing these metrics
as training weights to enhance the model’s dynamic anti-
noise capability. To concurrently strengthen the model’s
capacity to handle diverse noise environments, we introduce
multiscale noise-aware training, enabling simultaneous sensing
of multiple noise levels during each iteration. Ultimately,
through the loss integration, we integrate noise-free and
multiscale noise-aware training losses, facilitating model
parameter updates. The QuUST training pipeline is shown in
Algorithm 1, consisting primarily of three parts: 1) noise-free
inference; 2) noise inference; and 3) integrated loss function,
followed by updating model parameters. The total loss func-
tion is divided into two parts: 1) cross-entropy is used in the
noise-free training to enhance the model’s accuracy and 2) KL
divergence is used to measure the noise loss in noise-aware
training, measuring the difference between noisy inference
and noise-free model inference. This forces the model to
approximate noise-free inference even in noisy conditions,
thereby enhancing its robustness. Ultimately, by integrating
cross-entropy and KL divergence losses, the model achieves
higher-classification performance and greater robustness.
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Algorithm 1 Training Pipelines of QuUST
Input: The training dataset D, the noise dataset S =
{N1, N2, ..., Ny} characterized by spatial and temporal
biases across m days.
Output: The robust QUST QNN model M
1: Initialize model parameters for M
2: for (x,y) € (X,)) in D do
3: # Noise-free training setting
4 Videal = M (x, @) < @ denotes noise-free inference
5 Compute the noise-free loss
6: Ligeal = cross_entropyYideal, y)
7
8
9

Sampling C, items from noise dataset S:
Ssub = {Nl» Ny, ..., NC,,}
: # Multi-scale noise-aware training setting
10: Initialize the multi-scale noise-aware 1oss Lpgise = 0

11: for i in range(C,) do

12: Vnoise = M (x, N;) < noise-aware inference

13: CSC(N;) < Calculate the CSC of N;

14: Compute noisy loss /; with CSC as the weight:
15: Ii = CSC(N;) x KL(Jideal» Jnoise)

16: end for

17: # Integrate multi-scale noise-aware into loss function
18: Accumulate and average the multiple noise-aware loss
19: Lnoise = CL,I X Zlcio li

20: Combine Overall Loss Loyerall

21: Loverall = Lideal + Lnoise

22: Update QNN model parameters
23: M = back_propagation(M, Loyerall)
24: end for

25: return The trained M

A. Noise-Free and Noise-Aware Circuit Execution

Noise-free circuit execution means that all quantum
operations are executed correctly, referring to the error
probability 0%. Conversely, noise-aware circuit execution
implies the presence of a random probability for potential
errors in quantum operations. Specifically, within the QNN
model architecture, the model entity is designed to incor-
porate the Noise Model attribute, corresponding to a noise
configuration. Therefore, during a specific gate operation,
a randomly sampled probability determines whether it is
performed correctly. Gate operations involve sampling from
a gate set consisting of an identity gate (representing the
correct gate) and potential error gates. Sampling the identity
gate implies noise-free execution, whereas sampling an error
gate entails execution of both the correct and error gates. By
assigning historical noise data from the real quantum machines
to the gate and measurement operations® and subsequently
performing model inference, we call this random execution
process noise-aware circuit execution. Using these two circuit
executions in the QNN model inference, the mathematical
formalization is expressed as follows. Let M denote a QNN
classifier aiming to achieve f : X — ), where x € X €
R4 represents the input, and Y = {1,2,...,C} (where C

Swe explain the implementation details of loading the noise configuration
from files in Section VII-A, which is based on the Qiskit library.
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denotes the number of classification categories). Let y denote
the ground-truth label of x, and the model is deemed to
have classified correctly when f(x) = y. The term noise-free
inference refers to

5’ideal = M(x, 9)

where () denotes a noise-free environment. We use the cross-
entropy function to calculate the noise-free loss part Ligea)

(1)

The noise-aware inference for the ith noise profile as follows:

(10)

Lideal = Cross_Entropy()A)ideal, y).

)A/noise = M(x, N;). (12)

B. Integrate CSC to Loss Function

Since quantum noise evolves randomly, resulting in a con-
stantly changing noise magnitude, it damages the performance
of QNN models. To enhance the ability of the model to
dynamically adapt to different magnitudes of quantum noise,
we utilize the noise evaluation metric CSC as a training weight
for the loss function. This assigns higher confidence to smaller
noise levels and lower confidence to higher-noise levels. This
strategy is to sustain the overall training performance and
prevent terrible noise scenarios from affecting the training
process. The calculation of the single loss for noisy inference
is as follows: (Algorithm 1 lines 12-15)

l; = CSC(N;) x KL(&ideal, )A’noise) (13)

where the Kullback-Leibler divergence [37] is used to evaluate
the distribution similarity between noise-aware inference ynoise
and noise-free inference Jigea1, improving the model’s noise
resilience. Overall, our objective is to maintain high accuracy
in noise-free or small noise conditions and mitigate accuracy
deterioration in the presence of significant noise. To achieve
this goal of enabling the model to perceive and respond to
various noise levels, we assign different training weights to
different noise levels. Utilizing CSC as a training weight aligns
with our intentions. When encountering substantial noise,
the CSC value tends to decrease, thereby reducing the loss
function contribution weight. This training strategy prevents
extremely terrible noise scenarios from damaging the overall
training effectiveness. As the saying goes, “One bad apple
spoils the whole bunch.”

C. ONN Training Against Dynamic Noise

The QC undergoes frequent calibration and physical
environmental interactions, resulting in noise characteristic
changes across temporal and spatial biases. In Fig. 5, the noise
space is affined in a 3-D hyperplane, the 3-dim vector N;
represents a noise model for a specific day, and the big blue
sphere represents the upper boundary of the noise, i.e., the
maximum allowable error range. If the noise vector exceeds
the blue sphere boundary, the QC will be recalibrated. After
calibration, errors are suppressed into the red sphere, i.e., the
lower-error bound or infimum sphere. Fig. 5(b) shows that
even after recalibration, noticeable disparities persist among
different noise models N;. However, most existing methods,
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Fig. 5. Quantum noise visualization sphere: (a) Shows the calibrated single-
day noise model as a vector N; from different days and (b) red sphere
represents a noise infimum sphere comprising multiple noise model vectors,
while the blue sphere indicates recalibration with maximum error tolerance
limits.

e.g., QuantumNAT [4] and QuCAD [15] only consider noise
from a single day and heavily depend on the noise conditions
during training. Once the noise changes, these methods may
experience a sharp decline in model performance. Therefore,
they cannot effectively handle dynamic noise in real-world
quantum devices. To address this issue and improve generaliz-
ability across various noise scenarios, we introduce multiscale
noise-aware training to combat dynamic noise. It contains the
following steps:

Noise Sampling: We use noise data from the QCs as our
noisy dataset. To enhance the model’s noise resilience, we
randomly sample C, items of noise data for each training
epoch, thereby expanding the noise perception scope through
multiscale noise-aware training. Formulaically, each day’s
noise data is denoted as a noise vector N;, forming a noise
dataset S = {N{, N2, ..., Ny} where m € R represents the
number of days. During each training epoch, we randomly
sample C, noise vectors from noise dataset S to constitute
a noise subset Sqip = {N1,N2,...,Nc,} for each training
iteration. Importantly, we do not assume any specific noise
distribution or analyze noise patterns. Instead, we quantify how
noise affects a QNN model under different QC configurations
and use this as a perturbation factor in model training to
enhance robustness.

Multiscale Noise-Aware Loss Function: To further improve
the model’s robustness against spatial and temporal biases of
various noise magnitudes, we custom a multiscale noise-aware
loss function. We propose injecting noise from multiple days
to collaboratively update the model gradient to expand the
noise adaptation space of the model (Algorithm 1 lines 9-16).
That is, to fit the model to the entire infimum sphere, which
is depicted in the red sphere in Fig. 5(b). Specifically, during
each training iteration, randomly sample C,, noise profiles from
the noise dataset of temporal and spatial biases. Next, perform
noise-aware circuit inference, then accumulate and average the
multiple noisy inference 10ss Lyoise

1 &
Lioise = C_ X Zli
n —o

where [; = CSC(N;) x KL(Jideal, Ynoise) utilize KL diver-
gence (Kullback—Leibler divergence) to measure the difference
between model outputs distributions [38] (V; refers to the
noise of ith sampling). We use it to quantify the difference
between noisy and noise-free inference results, aiming to
make the noisy inference results closer to the noise-free

(14)
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(ideally) inference results, which correspond to lines 11-16
in Algorithm 1. Then calculate the overall loss function by
summing noise-free and noise inference, which is expressed
as follows:

Loverall = Lideal + Lnoise
1 &
= Lidea1 + C. ZCSC(NI') X KL()A’ideal» 5}noise)' (15)
" =0
Based on such loss function design, the model can maintain
high-noise-free classification performance (i.e., small Ligea))
and improve the robustness of the model against various noises
(i.e., small L;gise, tends to reduce the effect of noise on the
model accuracy). During each training iteration, the model
parameters are jointly updated using both the noise-free loss
Ligea1 and the multiscale noise-aware loss Lpgise (Algorithm 1
lines 17-23). Overall, our objective is to increase the QNN
model elasticity against ever-changing noises. The goal of
multiscale noise-aware training is to tailor the model to the
error bounds across the entire range of acceptable errors, as
depicted inside the red sphere in Fig. 5(b).

VI. ADVANTANGES OF QUST
A. Expressiveness of CSC Metric

To assess the influence of noise on QNN circuit execution
and use it as a confidence weight for noise-injected training,
enabling the model to adapt to various noise levels. Therefore,
we introduce a novel metric named CSC, which measures
the reliability of a circuit execution in noisy environments, as
explained in Section IV. To confirm that CSC provides a more
accurate characterization of QNN circuit execution accuracy in
noisy environments, this article introduces two popular metrics
for comparison.

1) Fidelity, which is defined as a quantitative measure of
the closeness between two quantum states [18]. For
example, comparing the quantum states prepared by the
circuit in noise-free and noisy configurations, thereby
estimating the reliability of executing the circuit with
noise.

2) PST fidelity (Probability of Successful Trials fidelity) is
an optimization version [18] of Fidelitythat mitigates the
exponential simulation cost of noise-free quantum states.
It computes the ratio of the invariant quantum state (all
zeros) by running a circuit and its reverse. PST fidelity
uses Monte Carlo simulation to assess the reliability of
the circuit in noisy environments by determining the
ratio of correct results.

To evaluate the relationship between three different noise
characterization metrics (Fidelity, PST fidelity, CSC) with the
QNN model accuracy, we perform MNIST-4 on IBMQ Quito
noise simulation using the “RX+RZ4-CRX” circuit as shown
in Fig. 6, and the correlation evaluation results. The results
are shown in Fig. 7, where the black dashed line represents
the ideal result as a reference, where Metric is equal to
Accuracy. As observed in the orange line in Fig. 7, PST
fidelity (orange line) is ineffective in characterizing model
accuracy, with model accuracy ranging from 0.5-0.9, but PST
fidelity shows minimal variation. Conversely, both Fidelity and
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5 November 2021]. Fig. 8(a) shows the model accuracy
across various CSC scales, while b) illustrates the accuracy
improvement achieved by QuantumNAT (QNAT) and QuST
over the baseline, indicating enhanced anti-noise capabilities
(subtracting the accuracy of baseline). In Fig. 8(a), the black
dashed line represents the baseline. Notably, as CSC val-
ues increase along the x-axis, model accuracy consistently
improves, serving as a reference for accuracy during CSC

Fig. 6. Three circuits block in our evaluation and the QNN model is cascaded based on two repeated blocks.
2
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Fig. 7. Compared QuST and other metrics with accuracy.
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Fig. 8. Depict “model accuracy and CSC” among different training methods,
t has consistently robust accuracy. The CSC value indicates the noise level,
with smaller values indicating higher-noise levels. a) Noisy Evaluation,
b) QuantumNAT VS Ours QuST.

CSC showcase a positive correlation with model accuracy,
and CSC shows stronger alignment and sensitivity to noise
fluctuations. This discrepancy arises because CSC derives
from the cumulative calculation of correct circuit sequence
execution probabilities, offering a direct reflection of circuit
reliability. In contrast, Fidelity and PST primarily account for
disparities in circuit output results and may introduce estima-
tion bias due to their limited awareness of the intermediate
gate sequence. Overall, the ranking of the positive correlation
between characterization metrics and model accuracy is CSC
> Fidelity > PST fidelity. Hence, considering CSC effectively
represents model accuracy, we can incorporate it into the loss
calculation to guide the model training process.

B. Multiscale Noise-Aware Adaptation

We further investigate the correlation between CSC and
QNN accuracy across single-noise perception and multiscale
noise-aware perception training methods. The experimen-
tal results are shown in Fig. 8. We conduct a 190-day
comparative experiment using the “RX+RZ+CRX” cir-
cuit for MNIST-4 classification, utilizing noise simulation
from IBMQ Quito, which involves three methods: 1) base-
line (noise-free); 2) QuantumNAT (abbreviated as QNAT,
using single noise-injection training method); and 3) QuST
(multiscale noise-aware perception). Notably, QuantumNAT
employed multiple CSC magnitudes for training, with
the corresponding training model indicated by a five-
pointed star, which QuantumNAT MI-M4 with CSC =
[0.44,0.582,0.769, 0.932] and correspond to dates [19
October 2021, 29 December 2021, 7 September 2021, and

variations. For a detailed analysis, we first examine the
performance of QuantumNAT M1-M4. The CSC value used
in model training is represented by a five-pointed star. We have
valuable insights.

1) Excessive noise in the noise injection method does not
improve the model’s noise resilience, instead, it intro-
duces considerable randomness, making it challenging to
train the model effectively. For instance, QuantumNAT
M1 with CSC = 0.44 is the largest noisy configuration
among M1-M4 and still performs poorly even in small
noise-magnitude environments.

2) Comparing the above insights, we can observe that
trained with medium-scale noise, such as QuantumNAT
M?2-M4, exhibit better-noise adaptability. This improve-
ment is most prominent when the test noise magnitude
closely matches the training noise magnitude, as evident
in Fig. 8(b) of the QuantumNAT five-pointed star at the
peak of each curve. However, their ability to adapt to
noise is limited when confronted with noise magnitudes
that are different from the training noise magnitude. This
highlights that the noise adaptability of QuantumNAT
is heavily reliant on the specific noise configuration
during training, as its objective is to achieve optimal
performance under the given training noise conditions.

3) When comparing QUST, represented as the black line
in Fig. 8, our approach incorporates a CSC weighting
mechanism tailored to evaluate different noise lev-
els. In scenarios with small noise, the model assigns
higher confidence (i.e., CSC) to the correct circuit
execution and adjusts training loss weights accordingly.
This prevents excessive noise from degrading model
performance. This weighting mechanism enables the
QNN model to consistently maintain high accuracy in
various small noise conditions and minimize accuracy
degradation when dealing with substantial noise chal-
lenges.

Overall, the experimental results highlight the strong cor-
relation between QuantumNAT’s noise resilience and the
magnitude of the training noise. Optimal performance occurs
when the noise magnitude matches the training noise, enhanc-
ing the model’s anti-noise capability. Specifically, excessive
noise negatively affects accuracy, while overly small noise pro-
vides limited resilience improvement. In contrast, our QUST
framework employs weighted noise environment evaluation
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and incorporates multiscale noise perception, enabling it to
combat noise across various scales effectively.

VII. EVALUATION

In this section, we comprehensively evaluate the model’s
anti-noise ability across temporal and spatial biases in noise
magnitudes and conduct real QC experiments and ablation
studies.

A. Experiment Setup

Platform: We train the QNN model using noisy simulations
only once and validate it on the real IBMQ machines: Quiro,
Lima, Belem, and Manila, with a 4-qubit QNN model. For
simulation validation, we utilize 190 days of historical noise
data from these machines, and the results are averaged.
We implement QUST using TorchQuantum [4] for noise
simulation and batch experiments, benefiting from fast GPU
support and efficient batch sample training compared to other
libraries.

Datasets: We use the popular image classification dataset
MNIST [39] and Fashion-MNIST. The MNIST contains 70K
28 x 28 grayscale images of handwritten digits from O to 9,
and the Fashion dataset contains 70K 28 x 28 grayscale
images of 10 classes of clothing, which include t-shirt/top,
trouser, pullover, dress, coat, sandal, shirt, sneaker, bag, and
ankle boot. Specifically, we mainly conduct MNIST-4 (0, 1,
2, 3) and Fashion-4 (t-shirt/top, trouser, pullover, dress).
We split the dataset 90% of the images for training and
validation, and the remaining 10% consists of our test set.
Before feeding the QNN model, images will be centrally
cropped from 28 x 28 to 24 x 24, then down-sampled to
4 x 4 with average pooling, the same as QuantumNAT [4].
To construct our noise dataset, we refer to the VACSEN
dataset [17], which encompasses calibration data collected
over 190 days, spanning from July 2021 to January 2022,
across 11 IBMQ QCs. The dataset contains multiple physical
hardware properties (e.g., decoherence time, error rate, etc.)
collected from the IBM Quantum platform [40]. We mainly
selected 4 devices from this VACSEN, including Quito, Lima,
Belem, and Manila.

Experiment Setting: Our experiments utilize calibration data
from 4 IBMQ QCs over 190 days. We set the noise factor
F =1, and the final result is the average of m = 190 days
of noise simulation tests without specific annotation. QUST
set samples C, = 3. In Section VII-F testing different noise
magnitudes, we set noise factor F' = {0, 0.5, 1, 2}, and include
four scenarios: 1) “No noise;” 2) “Read” noise; 3) “Gate”
noise; and 4) “Read and Gate” noise.

ONN Model Implementation: Fig. 6 depicts our QNN model
circuit architecture, we use amplitude encoding, trainable
quantum layers use “RX+4+RZ+4CRX,” “RY+RZ+4CNOT,” and
“RY+CRX?” circuit templates shown in Fig. 6, and measure-
ment adopts the Pauli-Z basis. In this article, we construct
our quantum layer by cascading two blocks for each circuit.
Finally, the measurement results apply a Softmax function to
output the model prediction results, and then calculate the
loss function and update quantum layers’ trainable parameters.
We use qiskit [21] for circuit transpile, setting optimization —
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TABLE I
TEMPORAL BIAS EVALUATION ON MNIST-4 AND FASHION-4

Data | Circuit | Noise || Baseline QuantumNAT Ours

) L] X 0869  0.824 (J0.045) 0.864 (10.005)

i RX+RZ+CRX v 0.664 0723 (10.059) 0.805 (10.141)

5 . CTx 0.842  0.801 (J0.041) 0.835 (}0.007)

g | RYRRZ#CNOT" [ 0631 0707 (10.076) 0.782 (10.151)

= RY+CRX" X 0.854  0.819 (0.035) 0.848 (10.006)

v 0.659 0716 (10.057) 0.793 (10.134)

) T X 0.865  0.840 (J0.025) 0.861 (10.004)

+ | RX#RZHCRX v 0.690 0729 (10.039) 0.811 (10.121)
[=1

g |. CTx 0.850  0.832 (J0.018) 0.849 (10.001)

£ | RywRzeNOT [ 0702 0733 (10.031) 0.783 (10.081)

= . . X 0872 0.838 (10.034) 0.857 (10.015)

RY+CRX v 0.698 0711 (10.013) 0.796 (10.098)

level = 0, which simply translates multiqubit gates into basis
gates supported by IBMQ devices and matches the quantum
chip topology without performing noise optimization. Noise
simulations using IBMQ calibration data to calculate gate and
readout error probabilities.

Baselines: We compare QUST with two training methods:
1) baseline (noise-free) and 2) QuantumNAT (noise-injection,
aka QNAT). To ensure fairness, QuantumNAT is trained
on four different days with corresponding CSC scores:
[0.44, 0.582, 0.769, 0.932], which correspond to dates [19
October 2021, 29 December 2021, 7 September 2021, and 5
November 2021], with models denoted as “QNAT M1-M4”.
Notably, “QNAT M1” exhibits significant underperformance
due to adverse noise conditions. Therefore, except for the
experiment discussed in Section VI on single-noise and multi-
noise adaptation, we use the average accuracy of “QNAT
M2-M4” as the accuracy of the QuantumNAT model.

B. Evaluation of Temporal Bias

We conduct temporal bias evaluation on IBMQ Quito
noise simulation, spanning 190 days of calibration data.
Our testing involves two classification tasks (MNIST-4 and
Fashion-4) across three different circuit blocks. In Table I,
the performance ranking for the three circuit blocks on
the two datasets is “RX+RZ+CRX” > “RY+CRX” >
“RY+RZ+CNOT,” indicating that the “RX+RZ+4CRX” cir-
cuit exhibits greater expressiveness. Specifically, Table I
reveals that the baseline (noise-free training) performs well in
noise-free environments but suffers a significant performance
drop, up to 21.1% in the “RY+RZ4-CNOT” circuit of the
MNIST-4. We visualize the daily CSC scores of 190 days on
IBMQ Quito, which is depicted in Fig. 9. To provide a clear
representation, we conduct a 30-day random (slash noted in
Fig. 9). This sampling includes various noise magnitudes from
190 days to demonstrate daily performance fluctuations using
the “RX+4+RZ+CRX” circuit for MNIST-4 on IBMQ Quito.
These results are illustrated in Fig. 10, the x-axis refers to a
relative time sequence spanning 190 days, ranging from 7 July
2021 to 12 January 2022. For instance, the date “17 July 2021”
is abbreviated as “D10,” and the y-axis corresponds to the F1-
score.QuantumNAT utilizes the “QNAT M3” model, trained
with the 7 September 2021 CSC(= 0.769) noise configuration,
as it provides relatively stable accuracy.

Based on Fig. 10, the models perform notably well on days
D85 and D127, particularly for baseline. Due to high CSC
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Fig. 9. CSC values from 190-day quantum noise in IBMQ Quito, with slashed bars denoting 30-day samples in Fig. 10.
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Fig. 10. Visualizing daily Fl-score and CSC over 30 days, using the “RX+4+RZ+CRX"” circuit for MNIST-4 on IBMQ Quito.

TABLE II
TESTING OF SPATIAL BIAS TOWARD MNIST-4 AND FASHION-4

Dataset Circuit Design Noise Lima Belem Manila
) s1g Baseline QuantumNAT  Ours Baseline QuantumNAT  Ours Baseline  QuantumNAT  Ours
s s X 0.870 0.777 0.869 || 0.871 0.741 0.864 || 0.869 0.801 0.853
MNIST-4 RX+RZ+CRX v 0.622 0.754 0.785 || 0.620 0.721 0.770 || 0.660 0.736 0.765
. s s X 0.674 0.618 0.672 || 0.673 0.645 0.656 || 0.673 0.662 0.654
Fashion-4 RY+CRX v | 0625 0.650 0.671 || 0.620 0.642 0.662 || 0.641 0.643 0.650

of 0.906 and 0.880. Conversely, the baseline Fl-scores for
D177 and D80 are much lower due to lower-CSC values of
0.618 and 0.65 on those days.Notably, there is a substantial
performance gap between QuantumNAT and baseline on days
D17, D72, and D77, driven by their respective CSC values of
0.778, 0.792, and 0.760. On these days, the baseline exhibits
limited effectiveness, while the proximity of QuantumNAT’s
training with CSC = 0.769 on 7 September 2021 results in a
more favorable performance. The average Fl-score of QUST
is ~8% higher than QuantumNAT. Overall, baseline accuracy
tends to vary with CSC, where smaller noise magnitudes
lead to better performance, while bigger noise magnitudes
result in poorer performance, QuantumNAT is more inclined
to adapt to noise of a comparable magnitude to the noise
injected during the training process, and its performance is
unstable in other noise magnitudes environments. In contrast,
our model exhibits overall stability in performance, especially
when dealing with better-CSC scores, because our model is
designed to prioritize fitting smaller noise magnitudes. For a
more comprehensive analysis of CSC and model performance,
please refer to deep insights in Section VI.

C. Evaluation of Spatial Bias

For spatial bias, we use the “RX+RZ+CRX” circuit
on MNIST-4 and the “RY+CRX” circuit on Fashion-4,
tested on IBMQ Lima, Belem, and Manila. As shown in
Table II,baseline achieves peak performance in noise-free
tests but suffers significant degradation in noisy tests, with

accuracy losses of up to 29%. In noisy environments on
MNIST-4, QuST outperforms baseline by 10.5%-16.3% and
QuantumNAT by 2.9%-5%, with an average improvement
of 13.9% over baseline and 3.7% over QuantumNAT. For
Fashion-4, QUST outperforms baseline by 10.9%-14.6% and
QuantumNAT by 2%-3.7%, with an average improvement of
14.2% over baseline and 2.6% over QuantumNAT.

D. Extended Experiments on Temporal and Spatial Biases

To further evaluate the performance of QuST, we conduct
cross-testing experiments and smaller noise magnitudes eval-
uation.

1) Cross-Testing Evaluation: To thoroughly evaluate
the effect of noise variations on model accuracy,
we conducted comprehensive cross-testing using the
“RX+RZ+CRX” circuit for the MNIST-4 classification
on 4 IBMQ machines. The result is shown in Table III,
which shows the average accuracy over a 190-day testing
period. In noisy testing environments, the highest accu-
racy is usually achieved on the training machine, while
accuracy on other machines depends on their inherent
noise characteristics. In the noise test on four machines
(IBMQ Quito, Lima, Belem, and Manila), compared to
the baseline, QuantumNAT achieved average accuracy
improvements of 5.48%, 3.48%, 5.6%, and 4.88%, while
QuST achieved increased by 11.3%, 9.1%, 11.1%, and
11.45%, respectively.
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TABLE III
EXTENDED EXPERIMENTS ON TEMPORAL AND SPATIAL BIASES EVALUATION OF MNIST-4 USING THE “RY+RZ+CNOT” CIRCUIT

o, ‘ Test H Quito Lima Belem Manila
Train | —oise || X 7 X % X 7 X 7
Baseline 0.869 0.657 0.872 0.694 0.859 0.667 0.863 0.615
Quito | QuantumNAT || 0.824 (10.045) 0.723 (10.066) || 0.843 (]0.029) 0.714 (10.020) || 0.827 (10.032) 0.721 (10.054) || 0.820 (10.043) 0.694 (10.079)
Ours 0.864 (10.005) 0.805 (10.148) || 0.866 (0.006) 0.762 (10.068) || 0.852 (0.007) 0.761 (10.094) || 0.858 (10.005) 0.757 (10.142)
Baseline 0.871 0.735 0.871 0.744 0.869 0.747 0.864 0.651
Lima | QuantumNAT | 0.856 (J0.015) 0.746 (10.011) || 0.845 (10.026) 0.762 (10.018) || 0.833 (10.036) 0.754 (10.007) || 0.847 (J0.017) 0.754 (10.103)
Ours 0.872 (10.001)  0.824 (70.089) || 0.869 (10.002) 0.836 (10.092) || 0.863 (10.006) 0.796 (10.049) || 0.856 (10.008) 0.785 (10.134)
Baseline 0.871 0.664 0.869 0.709 0.871 0.681 0.863 0.622
Belem | QuantumNAT || 0.849 (10.022) 0.726 (10.062) || 0.834 (10.035) 0.727 (10.018) || 0.841 (J0.030) 0.731 (10.050) || 0.836 ({0.027) 0.716 (10.094)
Ours 0.870 (10.001)  0.793 (10.129) || 0.868 (40.001) 0.776 (10.067) || 0.865 (10.006) 0.790 (10.109) || 0.857 (10.006) 0.760 (10.138)
Baseline 0.869 0.639 0.859 0.672 0.861 0.620 0.863 0.660
Manila | QuantumNAT || 0.842 (10.027) 0.682 (10.043) || 0.832 (J0.027) 0.690 (10.018) || 0.832 (}0.029) 0.678 (10.058) || 0.850 (10.013) 0.736 (10.076)
Ours 0.862 (10.007)  0.756 (10.117) || 0.853 (J0.006) 0.758 (10.086) || 0.859 (10.002) 0.743 (10.123) || 0.851 (J0.012) 0.792 (10.132)
TABLE IV
CIRCUIT COST OF VIRTUAL CIRCUITS AND TRANSPILE PHYSICAL CIRCUITS ON FOUR REAL /BMQ DEVICES.
Circuit Virtual Circuit IBMQ Quito IBMQ Lima IBMQ Belem IBMQ Manila
#1-q #2-q depth | #1-q #2-q depth | #1-q #2-q depth | #1-q #2-q depth | #1-q #2-q depth
‘RX+RZ+CRX’ 32 24 30 | 253 96 232 | 242 84 234 | 253 96 232 | 259 114 254
‘RY+RZ+CNOT’ 24 6 21 48 6 21 48 6 21 48 6 21 48 6 21
‘RY+CRX’ 16 16 18 | 191 80 167 | 190 68 181 | 191 80 167 | 191 80 167
095 [ Baseline [0 QuantumNAT =3 Ours ¢ CSC value TABLE V
0.90 0.975 TEST MODEL PERFORMANCE IN REAL QUANTUM MACHINES
0.85 0.970
o 080 0.965 § Dataset H Test Model H Quito ‘ Lima ‘ Belem ‘ Manila
5075 3
a 0.70 0.960 2 Baseline 0.410 | 0.550 | 0.520 | 0.451
© 0.65 § MNIST-4 || QuantumNAT || 0.636 | 0.682 | 0.553 | 0.615
0.60 oo Ours 0.713 | 0.747 | 0702 | 0.711
055 0950 Baseline 0.503 | 0.567 | 0.433 | 0.531
0.50 57 D128 Ty e ey 0.945 Fashion-4 || QuantumNAT || 0.652 | 0.698 | 0.656 | 0.671
Test results with noise from different days Ours 0.702 | 0.744 | 0.679 0.685
Baseline 0.654 | 0.731 | 0.634 | 0.702
Fig. 11. Test on four small noise scenarios on IBMQ Quito, where MNIST-2 || QuantumNAT || 0.822 | 0.855 | 0.810 | 0.847
QuantumNAT is trained on D128 (CSC value close to D136). The performance Ours 0.896 | 0.911 | 0.862 | 0.865
of baskf:lLrlle a:l(i) 1QuantumNAT fluctuates significantly, whereas ours remains Baseline 0655 1 0752 1 0.633 | 0.732
remarkably stable. Fashion-2 || QuantumNAT || 0.763 | 0.862 | 0.760 | 0.823
Ours 0.879 | 0.906 | 0.836 | 0.855

2) Evaluate Small Noise Magnitudes: To evaluate the
performance under small noise scenarios, we selected
four days with minimal noise magnitudes (CSC:
0.949-0.974) for the MNIST-4 classification task on
IBMQ Quito, where QuantumNAT is trained on D128
(CSC =~ 0.9737). The results are shown in Fig. 11,
QuantumNAT achieved its best-F1 score of 0.859 on
training day D128. However, when tested on D136,
which is of a similar noise level (CSC =~ 0.9742),
the Fl-score dropped to 0.764, a decrease of 9.52%. In
contrast, our method showed only a 1.89% difference
in performance between D128 and D136. This indicates
that even in the presence of small noise, QuantumNAT’s
training method cannot maintain high performance
across different noise conditions. Specifically, a model
trained on D128 can adapt to the small noise of D128
but cannot adapt to the small noise of D136. Conversely,
our multiscale training method ensures adaptability to
different noise distributions, consistently maintaining
good performance across the four small noise test days.
This consistency underscores the original intent behind
the design of QuST. We also perform evaluations on

different noise magnitudes, the results can be found in
https://github.com/JanusQ/QuST.

E. Evaluation on Real-World Quantum Devices

To demonstrate the effectiveness and deployability on real
QGCs, we conduct a case study using the “RX+RZ+CRX”
circuit to evaluate the classification accuracy of MNIST-2
and 4 and Fashion-2 and 4 on four IBMQ devices, including
IBMQ Quito, Lima, Belem, and Lima. QuantumNAT is the
average of QNAT M2-M4, as shown in Table V. Moreover,
we calculate the circuit cost from the virtual circuit to the
transpiled physical circuit, and the result in Table IV. The
columns #I-q, #2-q, and depth represent the number of
single-qubit gates, the number of two-qubit gates, and the
depth of the circuit, respectively. In Table V, the average
test accuracy of the baseline model on the four classification
tasks (MNIST-4, Fashion-4, MNIST-2, Fashion-2) is 0.483,
0.509, 0.680, and 0.693, respectively. QuantumNAT is 0.622
(113.9%), 0.669 (116.1%), 0.833 (115.3%), 0.802 (110.9%)
compared with baseline, QUST achieves 0.718 (123.6%),
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TABLE VI
TEST MODEL PERFORMANCE ON MNIST-4 IN LATEST REAL QUANTUM MACHINES, QNAT (OLD) MEANS QUANTUMNAT TRAIN ON IBMQ QuITO,
QNAT (RE) MEANS RETRAIN ON THE CORRESPONDING MACHINE, OUR METHOD IS TRAINED ON IBMQ QUITO

Test Time Sherbrooke Brisbane Kyoto
Baseline QNAT(old) QNAT(re) Ours || Baseline QNAT(old) QNAT(re) Ours || Baseline QNAT(old) QNAT(re) Ours
2024/6/15 0.487 0.523 0.733 0.812 0.493 0.522 0.687 0.702 0.506 0.542 0.754 0.749
2024/6/23 0.501 0.568 0.751 0.827 0.543 0.573 0.757 0.813 0.473 0.508 0.688 0.693
TABLE VII

ABLATION EXPERIMENTS ON CSC-WEIGHTED AND LOSS INTEGRATION
USING THE “RX+RZ+CRX” CIRCUIT IN MNIST-4

Weight Coefficients § | 0 | 1 | CSC| 10 | 100
‘RX+RZ+CRX’ | 0.723 ] 0.778 | 0.805 | 0.768 | 0.741

0.703 (1119.4%), 0.883 (120.3%), 0.869 (117.6%) compared
to baseline, and 9.7%, 3.3%, 5%, and 6.7% higher than
QuantumNAT, respectively. The test performance ranking
within the same training category is Lima > Manila >
Quito > Belem. This ranking aligns with the noise mag-
nitudes, quantum chip topology, and other characteristics
of actual QCs. Overall, our method consistently delivers
the highest performance on real QCs, maintaining a notice-
able performance advantage over the other two training
methods.

In 2024, IBMQ unveiled new QCs boasting 127-1121
qubits, offering enhanced performance due to increased qubit
count and reduced noise levels. To assess the effectiveness of
QuST on these latest machines, we conducted experiments on
IBM Sherbrooke, IBM Brisbane, and IBM Kyoto. We trained
the model on IBMQ Quito and evaluated its performance on
the three new machines. QNAT (old) refers to directly testing
a QuantumNAT model trained on Quito, while QNAT (re)
involves retraining the model on the target machine before
testing. The results are summarized in Table VI. Thanks to
our robust training methodology, leveraging weighted noise
training to achieve robustness across time and variations
in noise profiles allowed our method to maintain superior
performance even on the different latest machines. For com-
parison, QuantumNAT just considers single-day noise on the
single quantum machine, which demonstrates a significant
performance gap (up to 21.2% on IBM Kyoto) between
direct deployment and retraining. These findings further high-
light the importance of training noise-resistant models like

QuST.

FE. Ablation Studies

We conduct ablation experiments on CSC, loss integration,
and the training perception periods of noises. To verify the
validity of key components, we implement the MNIST-4
classification task on IBMQ Quito using the “RX+RZ+CRX”
circuit, and subsequent settings are the same if not specifically
stated.

CSC and Loss Integration: We conduct ablation studies
for CSC-weighted loss integration in MNIST-4 classification,
using the “RX+RZ+CRX?” circuit and setting the noise factor
to F = 1. We consider four weight coefficient 6 settings
for loss integration: 6 = {0, 1, CSC, 10, 100}. Since CSC
is incorporated into the loss function as a training weight

coefficient, wherein 6 = 0 represents without loss integration,
6 = {1, CSC, 10, 100} is used to analyze the effect of different
scales CSC-weighted loss integration values on the model’s
accuracy. The results are shown in Table VII. The experi-
mental results demonstrate that the introduction of the loss
integration component leads to an improvement of the QNN
accuracy from 1.8% to 8.2%. Different weight coefficients
assigned to the loss function result in various degrees of
performance enhancement. The accuracy improvements cor-
responding to 6 = {1, CSC, 10, 100} are 5.5%, 8.2%, 4.5%,
and 1.8%, respectively. Notably, our proposed CSC dynamic
evaluation weight achieves the highest-accuracy improvement
of 8.2%. In summary, loss integration in the presence of
noise contributes to improving the model’s resilience to noise.
Moreover, customizing different training weight coefficients
for distinct noise environments facilitates better adaptation to
varying noise magnitudes, thus enhancing the overall noise
resistance of the model.

Multiscale Noise-Aware Training Perception Periods: For
the multiscale noise-aware training, we conduct the experi-
ments with five groups sampling periods of noise subsets,
including one week, two weeks, one month, whole datasets
(190 days), and whole filtered (filtered outliers CSC < 0.5
of whole datasets, remaining 180 days.). Specifically, the first
three groups are sampled from 190 days. We evaluate the
model performance on the MNIST-4 classification task with
the “RX+RZ+CRX” circuit over 190 days and noise factor
F = 1. Fig. 12 shows the accuracy and standard deviation with
different settings. Based on our observations, we summarize
three key points.

1) Introducing noise outliers can damage the model’s
optimal accuracy. For example, training with noise
outliers decreases optimal performance (e.g., 190 days
perform worse than one month). In contrast, overall
performance improves with filtering outliers (filtering
CSC < 0.5), which prevents excessive noise from
overshooting the model accuracy.

2) As noise accumulates, increasing the noise perception
range is helpful to improve the model’s robustness.
According to the tested noise types, there is little
difference between no noise and read noise, as read
errors tend to be more stable. Gate and read and
gate significantly affect noise perception due to greater
noise accumulation, achieving the best performance after
filtering noise outliers.

3) There is a tradeoff between the sampling period and
model convergence time. Shorter sampling periods result
in faster convergence while extending the model’s
noise perception range, which enhances robustness but
requires more training time. Users can tailor the training
strategy to suit their specific needs.
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Fig. 12.

VIII. DISCUSSION

The Practicability of QuST: QuST is a general training
method, it can be combined with existing error mitigation
methods, such as ZNE [10], PEC [8], QECC [7], [30], and
so on. Taking QECC as an example, the QECC reduces
the probability of calculation errors by introducing additional
qubits during the encoding process, detecting and repairing
some errors during decoding. The QNN model perceives noise
and mitigates errors in advance, which helps it exhibit better
performance.

Extensibility of QuST: QuST is a robust training frame-
work that is scalable and efficient, not limited by factors, such
as qubits numbers or quantum implementation technology.
It can also be integrated with optimized circuit compilation
techniques to reduce circuit depth, improve QNN model
accuracy, and so on. Furthermore, while this article focuses on
QNN models, this approach can be extended to other quantum
machine learning methods in the future and potentially applied
to various research areas within quantum computing.

Limitations and Future Works: Our work has some limita-
tions as follows.

1) Spatial bias in quantum systems can arise from imperfect
hardware, environmental interactions, and other factors,
often complex interactions. We focus on investigating
the effect of noise using high-level noise models across
different quantum devices, and future studies can delve
deeper into spatial bias.

2) Regarding temporal bias, this article investigates the
effects of multiple noise sampling periods. Future inves-
tigations can explore combined training schemes of
different noise scales.

3) Develop adaptive optimization techniques, such as
automatically optimizing the QNN circuit structure
according to the characteristics of the quantum device
(T1 (thermal relaxation time), T2 (dephasing time),
and chip topology), and automatically searching for
the optimal circuit combined with our error mitigation
technology.

In the future, we will conduct comprehensive research on
various noise sources, carefully analyze the intrinsic character-
istics of distinct noise, and subsequently enhance the model’s
noise-resilient ability to adapt to diverse noise scenarios.

IX. CONCLUSION

In this article, we propose a noise-resilient QNN model
training framework capable of adapting to temporal and spatial
noise biases at multiple magnitudes without retraining. We
introduce CSC as a metric for evaluating circuit reliability in

Gate only Read ar'1d Gate

Ablation on noise sample period, the whole filtered means filtered outliers (CSC < 0.5).

noisy environments. By utilizing CSC as a training weight,
we integrate different noise configurations into the QNN
model’s loss function, and we employ multiscale noise-aware
training techniques to expand the model’s noise tolerance.
Consequently, our experimental results demonstrate that our
proposed noise-resilient training framework, QuST, maintains
stable performance and enhances noise resilience, effectively
mitigating noise biases across temporal and spatial dimensions.
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