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Abstract—Tensor algebra plays a major role in various appli-
cations including data analysis, machine learning, and hydrody-
namics simulation. Different tensor algebra inherently varies in
dimension, size, and computation, leading to different execution
preference, including parallelization, data arrangement, and
accumulation. Another critical aspect for tensor algebra is the
involved tensors can be with varying mixes of dense and sparse
representation. Such diversified applications are notoriously diffi-
cult to accelerate. Prior ASIC architectures do not meet the needs
due to fixed dataflow and prior fine-grained fabrics (e.g. FPGAs)
solutions offer limited performance and power improvement due
to bit-level reconfigurable structure.

In this paper, we propose Morphling, a reconfigurable archi-
tecture that can flexibly handle both dense and sparse tensor
computation. We first generalize a flexible execution model that
decomposes tensor operations into three steps, including tensor
vectorization, vector computation, and output reduction. The
dense and sparse tensor computation share the same execution
model, but differ in the vector computation step where the
multiplications are conducted. Depending on the number of
inputs and outputs that are linked together in the computation
step, we define three parallel patterns including many-to-one,
one-to-many, and one-to-one, which correspond to different
implementation for dense and sparse computation. Furthermore,
to efficiently support sparse tensor, we design a tiled-BCSR
format that enables high parallelism and balanced workload. At
architecture level, we propose a reconfigurable design to support
the execution model. The hardware units can be reconfigured
to support different datapath and enable different types of data
reuse. We evaluate Morphling using various tensor operations
and compare it with CPU, GPU, FPGA and state-of-the-art ASIC
designs. Overall, Morphling achieves 13.4X, 677.7X, 44.7X energy
efficiency over Xilinx ZC706 FPGA, Intel i7-9700K CPU, and
NVIDIA TitanX GPU.

I. INTRODUCTION

Tensor algebra is a powerful tool in many applications, such
as data analysis, machine learning, and hydrodynamics simula-
tion [1, 2, 19, 33, 37, 54, 71, 79, 84]. Distinct tensor algebra
exhibit inherent variation in tensor dimension, computation,
and accumulation. For example, 2D-convolution (2D-CONV)
and general-purpose matrix multiplication (GEMM) are two
frequently used kernels in modern complex DNNs such as
Resnet [31], GoogLeNet [76] and data analysis [6, 56]. 2D-
CONV in Resnet involves 4-order tensors and 3-order tensors
with size ranging from 10 to 1K [31], while GEMM contains
three 2-order matrices and the size of the matrices can be much
larger, e.g., Filter3D dataset involves 106K×106K matrices
[56]. In 2D-CONV, the 2D-kernel slides through the feature
map where the elements inside the sliding window conduct
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a multiply-and-accumulation (MAC) operation to generate
a single output, while in GEMM each output element is
generated by accumulating the multiplication results from one
row of a matrix and one column of another matrix. Another
important feature for tensor algebra is the tensors can be with
different mixes of dense and sparse representation. For sparse
computation, the sparsity can vary hugely for different tensors.
For example, for deep learning algorithms, the sparsity of 2D-
CONV can vary from 30% to 95% for input tensor depending
on the used pruning techniques [27, 28]; for tensor factorization
algorithms, the tensors exhibit different degrees of sparsity for
different dataset[6, 56].

Variation in tensor algebra leads to different execution
preference including parallelization, data arrangement, and ac-
cumulation. We compare the hardware efficiency of two widely-
used parallelization strategies for 2D-CONV and GEMM in
Figure 1. Dot-product parallelization yields a single value
by multiplying and accumulating elements from two vectors,
which is widely used in prior accelerator designs [25, 26, 35,
42, 43, 48, 49, 52, 80–82, 85, 89]. Outer-product parallelization
returns a matrix where each element in one vector is multiplied
with all the elements in the other vector [53, 61, 62]. Both
two parallelization strategies can be used for executing 2D-
CONV and GEMM by transforming the tensors as shown in
Figure 2. Figure 1 (a) computes the hardware efficiency of
these two parallelization strategies for the first 24 layers of
GoogLeNet [76] using 2D-CONV. The hardware efficiency
refers to the utilization of MAC units. We observe that no
single parallelization strategy wins all cases. In particular, outer-
product wins for 18 layers while dot-product wins for 6 layers.
For GEMM, the X-axis in Figure 1 (b) represents different
shapes of the matrices including regular, tall-skin, and short-fat
matrices. When multiplying matrix A (M×K) with matrix B
(K×N), dot-product parallelization achieves high efficiency
when K is large while outer-product is better when M and N
are large. The difference in hardware efficiency for different
parallelization strategies is caused by the variation in the size
of different tensors.

Meanwhile, it is well established that tensor algebra in-
volves overwhelming computation [6, 22, 56]. Traditional
accelerators such as CPUs and GPUs have been employed
to accelerate tensor operations which suffer from low energy-
efficiency [10, 64]. Dedicated ASIC accelerators solve this
problem, but lose flexibility to handle various tensor applica-
tions [11, 14, 18, 34, 48, 48]. The requirement for flexibility
and efficiency motivates the idea of accelerating tensor algebra
using reconfigurable architectures. FPGAs are reconfigurable
architectures that provide bit-level reconfigurability in logic
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(a) 2D-CONV tensor operation (b) GEMM tensor operation

Fig. 1. Hardware efficiency for 2D-CONV and GEMM. C1-C24 are the first 24 layers of GoogLeNet [76]. For GEMM, when one dimension changes, the
other two are set to 4096. The architecture is assumed to have 512 MAC units. For outer-product parallelization, we apply output stationary systolic array
architecture. For dot-product parallelization, we apply input stationary systolic array architecture.

blocks. However, this fine-grained reconfigurability results
in high area and power overheads [9, 38, 39, 65]. To solve
these architectural inefficiencies, coarse-grain reconfigurable
architectures (CGRAs) realize the best possible trade-off
between flexibility and efficiency, which use word-level re-
configurability and contain larger logic blocks and datapath-
oriented interconnections.

To accelerate diverse tensor algebra on hardware, we
introduce a tensor-specific CGRA framework, which can
accelerate various tensor operations with arbitrary dimension,
size, and sparsity. We first propose a flexible tensor execution
model that generalizes the tensor operation into three steps
including vectorization, computation and reduction for both
dense and sparse tensor computation. The vectorization step
rearranges the original tensor into vectors for parallelization.
The reduction step accumulates the outputs in the computation
step and generates the final results. Depending on the number
of inputs and outputs that are linked together in the computation
step, we abstract three parallel patterns including many-to-one,
one-to-many, and one-to-one. The three parallel patterns have
the flexibility to choose different implementation for dense
and sparse tensor computation. For dense operations, they
correspond to dot-product, outer-product, and element-wise
vector multiplication, respectively. For sparse operations, they
correspond to row-wise product, Kronecker product [75], and
block-wise multiplication, respectively. To efficiently support
sparsity, we also propose a tiled-Block Compress Sparse Row
(tiled-BCSR) format, where the non-zeros are first packed in
blocks and then organized in tiles. This format leads to regular
accumulation and data access patterns. Besides, blocks are
evenly distributed in tiles, which helps to balance the workload
and provide high parallelism.

Traditional vectorization is a linear transformation which
converts a matrix into a column vector. In this work, our
vectorization step duplicate tensor elements with a certain
manner to unify the tensor computation pattern. This duplica-
tion also enables data reuse during the computation. Though
many spatial architectures support vector operators like dot-
product, outer-product, they did not answer how to decompose
tensor applications into these vector operators and gather their
partial sums. Our contribution is to provide an execution model
integrated with a reconfigurable architecture that can formulate
different dataflow for a wide range of tensor applications.

At architecture level, we propose a CGRA design with a
reconfigurable PE array and a reconfigurable network for data
communication to implement the execution model. Each PE is
responsible for the vectorization and computation step, while
the reduction step is implemented as the inter-PE data commu-
nication. The PE features a reconfigurable adder tree to gather
the partial sum in different manners by controlling the forward
data of each adder. The communication network is a two-
dimensional array of switches, which is used for the reduction
step and data communication among PEs. Each switch contains
local buffers and accumulator lanes. The local buffer can store
either the input data or the results of adjacent PEs, which
provides multi-dimensional data reuse. The accumulator lanes
can be cooperated to conduct different accumulation patterns.
By configuring the PE array and communication network,
Morphling can support a wide range of hardware dataflow
represented in our execution model. Last we apply polyhedral
model for application mapping, which takes tensor notation
as the input and explores different loop transformations under
architectural constraints. Prior CGRA designs are mainly de-
signed for general applications [17, 23, 29, 30, 83]. Morphling
is a domain-specific CGRA architecture with specialization in
computation and accumulation in the PE and communication
design and flexibility in the execution model and compiler
mapping for tensor computation.

In summary, this paper makes the following contributions:

• We propose a flexible domain-specific CGRA architecture
and compiler mapping for sparse and dense tensor applica-
tions. Morphling can handle different tensor algebra with
variation in dimension, computation, and representation.

• We define a flexible execution model to generalize the tensor
algebra to a programmable form and design a reconfigurable
architecture to support this.

• We propose tile-BCSR format where the data in the block
shows regular accumulation and access patterns. Tiled-BCSR
first packs the nonzeros into blocks and then stores in tiles.

We evaluate Morphling using various tensor operations and
compare it with CPU, GPU, FPGA and state-of-the-art ASIC
design. Overall, Morphling achieves 13.4X, 677.7X, 44.7X
energy efficiency over Xilinx ZC706 FPGA, Intel i7-9700K
CPU, NVIDIA TitanX GPU.
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TABLE I
TENSOR SIZE, COMPUTATION OF COMMON TENSOR OPERATIONS. THE COLORED DIMENSIONS INVOLVE INDEX GATHER OPERATORS. STEP 1:

VECTORIZATION STEP. STEP 2: COMPUTATION STEP. STEP 3: REDUCTION STEP.

Tensor
operation Tensor size Computation Execution model

STEP 1 STEP 2 STEP 3
GEMM1 Y: N×M; A: N×K; B: K×M Y (i, j) = ∑

k
A(i,k)∗B(k, j) A(i,:),B(:,j) DP NA

GEMM2 Y: N×M; A: N×K; B: K×M Y (i, j) = ∑
k

A(i,k)∗B(k, j) A(:,k),B(k,:) OP FA

2D-CONV1 Y: N×H×W
A: N×M×P×Q; B: M×H×W

Y (i, j,n) =
∑
m

∑
p

∑
q

A(n,m, p,q)∗B(m, i+ p, j+q)
A(:,:,p,q),

B(:,i+p,j+q) DP PA

2D-CONV2 Y: N×H×W
A: N×M×P×Q; B: M×H×W

Y (i, j,n) =
∑
m

∑
p

∑
q

A(n,m, p,q)∗B(m, i+ p, j+q)
A(:,m,:,:),
B(m,:,:) OP PA

KRP Y: NP×MQ;
A: N×M; B: P×Q

Y (i∗P+ x, j ∗Q+ y) = A(i, j)∗B(x,y) A(i,:),B(i,:) OP NA

3D-CONV Y: H×W×K
A: P×Q×R; B: H×W×K

Y (i, j,k) =
∑
p

∑
q

∑
r

A(p,q,r)∗B(i+ p, j+q,k+ r)
A(p,q,:),

B(i+p,j+q,:)
DP PA

SpMM Y: N×M; A: N×K; B: K×M
A, B in CSR

Y (i,Bidx(k)) =
Aptr(i+1)

∑
j=Aptr(i)

Bptr(Aidx( j)+1)
∑

k=Bptr [Aidx( j)]
Aval( j)∗Bval(k)

Aptr(:) - NA

Stencil-
Jacobs Y: N×M; A: N×M Y (i, j) = A(i−1, j)+A(i+1, j)+

A(i, j−1)+A(i, j+1)) A(:,:) EW NA

EWMM Y: N×M; A: N×M; B: N×M Y (i, j) = A(i, j)∗B(i, j) A(i,:),B(i,:) EW NA
MTTKRP Y: N×M; A: N×P×Q

B: Q×M; C: P×M;
Y (i, j) = ∑

p
∑
q

A(i, p,q)∗B(p, j)∗C(q, j) A(i,p,:),C(:,j)
A(i,:,q),B(:,j)

DP NA

GEMM: general purpose matrix multiplication, used in deep learning, data analysis.
2D/3D-CONV: two/three-dimensional convolution, used in deep learning, image processing.
KRP: Khatri-Rao product, used in tensor fabrication.
SpMM: sparse-sparse matrix multiplication, used in data base, deep learning.
MTTKRP: matricized tensor times Khatri-Rao product, used in recommendation systems, dimensionality reduction.
EWMM: element-wise matrix multiplication.
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Fig. 2. Examples of execution model in three steps. In this figure, we only depict (size,replica,vec type). C: circular manner. S: sequential manner.

II. BACKGROUND

Tensor is defined as matrices to any number of dimensions.
The number of dimensions is defined as its order. For example,
a scalar is a zero-order tensor and a vector is a one-order
tensor. Table I lists eight widely used tensor operations in
two categories. The first six operations require partial sum
accumulations while the last two only involve multiplications.
In Table I, we use A(i, :) to represent the dimension where
elements are selected with a fixed index i. For example,
MTTKRP tensor operation in Table I is widely used in
tensor factorization (e.g., recommended system); Stencil is
an operation that updates the original matrix by accumulating
neighboring elements; in element-wise matrix-matrix multipli-
cation (EWMM), elements from two equal-size matrices in the
same position is multiplied without accumulation; Khatri-Rao
product (KRP) is the operation without accumulation where

each element in one matrix is multiplied with all elements in
another matrix.

The real-world tensors can be involved with different mixes
of dense and sparse representation. For example, the tensor in
MTTKRP is naturally with high sparsity. The sparsity in deep
learning algorithms is caused by the non-linear operator ReLU
(rectified linear unit) function and model pruning. Table I shows
the computation of sparse matrix-matrix multiplication (SpMM)
in compressed sparse row (CSR) format [4]. CSR is widely
used to store sparse matrices where a matrix is represented
by three one-dimensional arrays: 1) row pointers to record the
number of nonzeros from the first row to the ith row (Aptr); 2)
column indices to record the column index of each nonzero
(Aidx); 3) values to record the value of each nonzero (Aval).
There are other formats like compressed sparse column (CSC)
and coordinate list (COO) to store sparse matrices [4].

The variation in tensor operation renders hardware accelera-
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Fig. 3. Tiled-BCSR format with non-zeros stored in dense blocks and sparse blocks. (b) is an example tiled-BCSR using sparse block.

tion difficult. Although most tensor computation is composed
of a series of MACs or only multiplications, the parallel pattern
and accumulation pattern of partial sums vary in dimensions and
size. Besides, the tensor can be sparse in real-world applications
where the sparsity may differ in orders of magnitude. Finally,
the difference in size and computation lead to different data
reuse opportunities and preference of parallelization, making
it hard to accelerate tensor operations with a fixed execution
model.

III. FLEXIBLE EXECUTION MODEL

A. Execution Model Design

The fundamental component of Morphling is a flexible
execution model that can support various tensor operations.
Depending on how the data are vectorized and reduced to the
final output, we generalize the tensor execution model in three
steps.

STEP 1. Vectorization. In this step, the input tensor is
transformed into a vector. During transformation, the input
tensor can be duplicated either in a circular or sequential
manner.

in vec = vectorize(src,size,replica,vec type) (1)

where src is the input tensor, size is the size of input
tensor, replica represents how many times these elements are
duplicated, vec type can be either circular or sequential. For ex-
ample, vectorizing (x1,x2,x3) to (x1,x1,x1,x2,x2,x2,x3,x3,x3)
is in sequential manner with replica = 3.

STEP 2. Computation. In this step, the transformed vectors
are multiplied together following different parallel patterns. The
computation step can be formulated as follows.

out vec = compute(in vec1, in vec2, length, para type) (2)

where in vec1 and in vec2 are the vectorized tensors with the
same length, para type is the type of parallel pattern.

The computation step has the flexibility to parallelize the
multiplications in different ways. Depending on the number of
inputs and outputs that are linked together in the computation
step, we define three parallel patterns including many-to-one,
one-to-many, and one-to-one. The many-to-one pattern refers
to the operator where a single output depends on multiple
inputs. The one-to-many pattern refers to the operator where a
single input element is used for multiple output elements. The

TABLE II
DENSE AND SPARSE OPERATORS FOR PARALLEL PATTERNS.

Parallel Pattern Many-to-one One-to-many One-to-one
Dense model Dot product Outer product EWVM

Sparse model Row-wise product
dense×sparse

Kronecker product
dense⊗dense

Block-wise
sparse�sparse

one-to-one pattern refers to the operator where a single output
depends solely on a single input element.

For dense tensor computation, we implement these three
parallel patterns using dot-product (DP), outer-product (OP),
and element-wise vector multiplication (EWVM) operators as
shown in Table II. DP operator corresponds to many-to-one
pattern where the partial sums are accumulated together to
yield a single output element. For example, in GEMM, the
intermediate results of multiple multiplications are accumu-
lated together in the dimension ’K’ using dot-product. OP
corresponds to one-to-many pattern where output elements
are generated by multiplying the element in one vector with
all other elements in another vector. For example, in KRP
operation, each element in one matrix is multiplied with all
elements in the other matrix. EWVM corresponds to one-to-
one pattern, e.g., EWMM operation. The operators for sparse
tensor operations will be introduced in Section III-C.

STEP 3. Reduction. The output vector from the computation
step could be the partial sums of the final result. Therefore, this
step accumulates the output vectors from multiple computation
steps to generate the final output.

rst = reduce(out vec1,out vec2, length, type,start,end) (3)

where out vec1 and out vec2 are output vectors from the
computation step, start and end are used to specify the
range if partial accumulation is needed, type is one of three
accumulation types including full accumulation (FA), partial
accumulation (PA), or no accumulation manner (NA). GEMM2
is an example of full accumulation, and 2D-CONV2 is an
example of partial accumulation.

These three steps are tightly correlated. The computation
step determines how the input tensors are transformed in the
vectorization step and how the output tensors are accumulated
in the reduction step. Table I lists the three steps for various
tensor operations. Figure 2 presents two examples of using this
execution model for GEMM, where we show how to use dot-
product (GEMM1) and outer-product(GEMM2) for GEMM.



This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3135322, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

5

TABLE III
SPARSE TENSOR REPRESENTED IN TILED-BCSR FORMAT. WE USE (:,:) TO DENOTE THE DIMENSIONS THAT REPRESENTED IN TILED-BCSR FORMAT. ×’:

ROW-WISE PRODUCT; ’⊗’: KRONECKER PRODUCT; ’�’: BLOCK-WISE MULTIPLICATION.

Tensor apps Dimensions in tiled-BCSR Unified computation Block dependency
SpMM A(:,:), B(:,:) Y (:, :) = A(:, :)×B(:, :) multiple block-Bs → one output row

Sp2D-CONV A(:,:,p,q), B(:,:,j+q) Y (:, j, :) = ∑
p

∑
q

A(:, :, p,q)×B(:, :, j+q) multiple block-As → one output row

SpKRP A(:,:), B(:,:) Y (:, :) = A(:, :)⊗B(:, :) one block-A → multiple outputs
Sp3D-CONV A(:,:,r), B(:,:,k+r) Y (:, :,k) = ∑

r
A(:, :,r)×B(:, :,k+ r) multiple block-As → one output row

SpEWMM A(:,:), B(:,:) Y (:, :) = A(:, :)�B(:, :) 1 block-A → 1 block-B
SpMTTKRP-S1 A(i,:,:), B(:,:) Y1(i, :, :) = A(i, :, :)×B(:, :) multiple block-Bs → one output row
SpMTTKRP-S2 Y1(:,:), C(:,:) Y (i, :) = ∑ j Y1(i, :, j)�C(:, j) 1 block-Y1 → 1 block-C

For example, in GEMM2, the elements from tensor A are
duplicated in sequential manner, and the elements from tensor
B are duplicated in circular manner to form an outer-product in
the computation step. Different output vectors are accumulated
using full accumulation pattern.

B. Format for Sparsity

For sparse tensor operation, the computation is tightly
coupled with the compression format. Block Compress Sparse
Row (BCSR) format is a structural representation and allows
continuous data access within a block. Previously, BCSR format
has been used in software library in HPC domain for specific
kernel such as SpMV [7, 8]. However, the real-world tensor
often shows irregular distribution of non-zeros, which makes
the hardware suffer workload imbalancing problem. To address
this, we propose a tiled-BCSR format where non-zeros are first
packed into blocks and then organized into tiles. Compared with
traditional formats like CSR, CSC, tiled-BCSR format shows
regular accumulation and data access patterns. Besides, sparse
tensor operations can be parallelized in multiple tiles, which
helps to balance the workload and provide high parallelism.

We first design two types of blocks that are dense block and
sparse block as shown in Figure 3 (a). As the computation step
only involves vector operator, we restrict the block shape as a
vector. In a dense block, the entire row is first compressed into a
dense vector by eliminating the zero elements and then divided
into blocks. In a sparse block, the entire row is first divided
into blocks and then compressed. dense block is designed
to increase the utilization of multipliers. sparse block has a
low overhead of locating the output address since the column
indices are continuous within a block.

To achieve a balanced workload for each PE, the blocks
are batched into multiple tiles with each tile contains multiple
continuous rows, as shown in Figure 3 (b). Each tile has a row
entry information which indicates the starting row index of
the tile. For each tile, there is a bit-flag matrix to record the
row index change where ’1’ means this block is in the next
row. To calculate the row-index, we only need to insert a bit
counter logic in each PE.

C. Enabling Sparse Computation

In our execution model, the parallel patterns are unified,
while the meta-operator is different, as shown in Table II.
Both sparse and dense operation can be executed on our
unified architecture design. To establish a general sparse tensor

× =

one-to-many

many-to-one

one-to-one

⨂

⨀

Kronecker product

row-wise product

block-wise multiplication

Fig. 4. Operators for the sparse computation step.

execution model, we begin with a tensor operation whose input
tensors are represented as a set of matrices stored in tiled-
BCSR format. For example, in Table III, the 4-D tensor A in
2D-CONV is compressed in the last two dimension with the
first two dimensions stored as pointer.

To support the parallel patterns in the computation step
in Section III-A, we define three operators for sparse tensor
computation as shown in Figure 4. In the row-wise product
operator ×, each block in matrix A (denoted as block-A) is
required to be multiplied with several blocks in different rows
of matrix B (denoted as block-B), where the row entry of
block-B is determined by the column index of the non-zero
value from block-A [24]. This corresponds to the many-to-one
pattern, as multiple rows of matrix B are calculated for one
row in the result matrix. Kronecker product operator (⊗) is a
generalization of the outer-product from vectors to matrices,
which corresponds to the one-to-many pattern. Block-wise
multiplication operator � is similar to EWVM pattern [75].

Using these operators, the sparse tensor computation can be
represented as follows,

Y (:, :) = M(n-1) 4 M(n-2) 4 ...M(2) 4M(0) (4)

M(i) is defined as a tiled-BCSR matrix selected from the ith

input tensor. The output Y (:, :) can be a vector or a matrix of
the final results. 4 is the operator of two tiled-BCSR matrices.
Table III shows how the sparse tensor operations are represented
using Equation 4. For example, MTTKRP can be represented
as Y (i, :) = ∑ j A(i, :, j)×B(:, :)�C(:, j).

Depending on the parallel pattern shown in Table II, the
matrices can be either encoded using dense block or sparse
block. In row-wise product, multiple blocks of matrix B
may link to the same output element if they share the same
column index. Therefore, we store matrix B in sparse block
to keep the column index continuous and matrix A in dense
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Fig. 6. Architecture details of reconfigurable adder tree.

block to maintain enough workload for multipliers, which
achieves a balanced trade-off between hardware efficiency and
indexing overhead. As Kronecker product does not require
index matching, both two matrices are stored in dense blocks
to maximize the utilization of multipliers. In block-wise
multiplication, the indices of blocks from two matrices need
to be strictly the same. The two matrices are stored in sparse
blocks to reduce index comparison.

Table III also gives the dependency between the blocks
of two tiled-BCSR matrices for different tensor computation.
For row-wise product, as one block in matrix A is linked to
multiple blocks in matrix B, therefore, elements in block-A
are replicated multiple times in the vectorization step. And the
computation step needs to accumulate the results that share the
same column index in the block-B. Similar to outer product,
Kronecker product operator replicates values in both matrices
in the vectorization step. And it is a one-to-many operator as
one input block is linked with multiple elements in the output.
Block-wise multiplication does not require the vectorization
step, and the blocks with the same row entry and column index
will be multiplied in the computation step.

IV. ARCHITECTURE DESIGN

Morphling is a tiled architecture consisting of a reconfig-
urable PE array and a reconfigurable communication network.
Figure 5 presents the overview of Morphling architecture where
each PE contains a local memory for data storage and a router
to transfer data. Each switch contains buffers to exploit data
reuse and accumulator lanes (AL) to support accumulation in
the reduction step. The on-chip scratchpad interfaces with the
DRAM through multiple channels.

A. PE Design

The vectorization and computation steps in the tensor
execution model are implemented within a PE. In other words,
each PE vectorizes the input tensor and performs one of three
basic vector operations in the computation step. As shown
in Figure 5, the data vectorization unit is used to vectorize
the selected elements into two vectors with the same length.
The function unit (FU) will first check whether multiplication

operations are needed (if it is dot-product or outer-product) for
the tensor operation. Then it sends the results to an adder tree
to generate the output vector.

Each PE features three kinds of reconfigurability. First, the
input tensor can be loaded either from the global scratchpad via
the router, or from the switch buffer via the local FIFOs. Each
PE has two input tensor buffers, and each buffer interfaces with
a control unit that can be dynamically configured to switch the
source of the input tensor. Second, the data vectorization unit
(DVU) has the flexibility to support different vectorization. The
vectorization step can be different in terms of tensor size and
duplication type, which is configured by the instructions. Third,
the function unit has the flexibility to support different vector
computation. The function unit includes a multiplier array and
a reconfigurable adder tree. The adder tree can support dot-
product operations with different lengths. Besides, if the tensor
is sparse and stored in a compressed format, then addition
operations will be performed according to the compressed
index. Special instructions are needed to configure the PE for
different vector computation and the configuration information
is stored in registers.

B. Reconfigurable Adder Tree

Figure 6 shows the micro-architecture of the reconfigurable
adder tree with 8 inputs. The reconfigurable adder tree receives
multiplication results from the multiplier array. The tree is
divided into multiple stages where the intermediate result from
each stage is stored separately in registers. Each reconfigurable
adder receives two inputs and sends one output forward to
the next adder. The forward element is selected among the
two inputs and their addition result via a multiplexer (MUX).
When accelerating dense tensor operations, the adder tree is
symmetrically configured for dot-product parallelization. In
the example of GEMM1, the adders in stage 1 and stage 2
are activated to form two dot-product operations. Similarly,
in 2D-CONV1 example, only the adders in stage 1 are
activated. When handling sparse tensor operation, each adder
is dynamically reconfigured according to indices. Details of
sparse optimization is discussed in Section IV-F.

C. Switch Design

In the computation step, each PE generates one output vector.
The reduction step is an inter-PE operation implemented using
switch. The switch has the flexibility to support either iterative
accumulation or forward accumulation pattern, as shown in
Figure 7. Iterative accumulation pattern, as shown in Figure
7(a) gathers the output vectors from the same PE, which only
has a single input source and iteratively accumulates the output
vectors at different cycles. Forward accumulation, as shown in
Figure 7(b) is an accumulate-and-forward chain to accumulate
output vectors from different PEs. To ensure the accumulation
pattern can be alternated, both data from adjacent PEs and
the result in the last cycle are buffered in the local memory.
There is a selector to distinguish whether it is the output vector
from the PE or the previous result in the local buffer. Besides,
the accumulator lane can shift the output vector with a given
length to enable partial accumulation in the reduction step.
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Fig. 7. Architecture configurations for GEMM and 2D-Conv. We use Lx to represent the parallelization degree in the dimension x. White color means not
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On the other hand, the switch can be used as a bridge
for inter-PE data communication by gating the accumulator
lane. As shown in Figure 5, the switch is employed to enable
data sharing among PEs. Each switch is connected with four
adjacent PEs using simple FIFO logic. The FIFO can either
send the input tensor or the output vector from PEs to the
switch. Similarly, a configurable multiplexer, connected with
input buffer and result buffer of the switch, controls which
data is required to send back to the PE array.

D. Reuse Analysis

Morphiling architecture exploits three types of data reuses.
First, there exists data reuse in a single PE, named same
PE same cycle reuse (SPSC). The SPSC reuse is from the
vectorization step in the execution model. It reuses the input
tensor at the register-level, where the PE duplicates the tensor
and stores it in local registers. Moreover, the data reuse may
arise from different PEs, which can be further categorized
into different PE same cycle reuse (DPSC) and different PE
different cycle reuse (DPDC). The DPSC reuse means that the
computation steps in different PEs share the same input tensor
at the same cycle. The DPSC reuse is exploited by reading the
tensor from the buffer only once and broadcasting the data to
multiple PEs via routers. Our switch design supports the DPDC
reuse among PEs. Clearly, the switch enables both multi-cycle
input reuse or output reuse by buffering the intermediate data
within two cycles. Multi-cycle output data reuse is achieved by
making output results stationary in the switch and iteratively
updating the input buffer in different cycles. The input data
reuse is enabled by configuring the multiplexer to directly
transfer the input data to another PE, as shown in Figure 5.
The multi-cycle input data reuse is also supported between
distant PEs by connecting multiple switches and configuring
the datapath. Both SPSC and DPSC are spatial data reuse,
while the DPDC reuse is temporal.

E. Architectural Examples

We use three examples to illustrate our reconfigurable
architecture. Figure 7 (a) applies outer-product to GEMM
using output-stationary dataflow [13, 40, 69]. We depict the
detailed configuration of PE(1,0) and switch. This PE is
configured to access one input tensor from PE(0,0) via switch
and the other input tensor from scratchpad via router. For
this dataflow, output vectors from the same PE need to be
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Fig. 8. Working flow example of row-wise product using tiled-BCSR format
and the congestion example. The blue block is from matrix A and green blocks
are from matrix B.

accumulated. Therefore, the switch is configured as iterative
accumulation to generate the final result. Meanwhile, SPSC
and DPDC reuses are exploited. Figure 7 (b) applies dot-
product to GEMM using input-stationary dataflow[13, 40, 69].
The input tensor is directly sent to the multiplier array with
the vectorization unit skipped. Besides, the output vectors
from the PE(0,0) and PE(1,0) are accumulated using forward
accumulation configuration of the switch. Figure 7 (c) uses
row-stationary dataflow[12] for 2D-CONV. The convolution
filter slides with overlap and thus the output vectors from PEs
are partially accumulated in the accumulator lane. In Figure 7
(b) and (c), DPSC reuse is exploited.

F. Sparse Computation Optimization

Though a unified computation pattern for sparse tensor
operations is proposed, an inefficient hardware implementation
may cause accumulation congestion problem. Figure 8 (b)
shows the datapath of row-wise dot-product that exists accumu-
lation congestion. The multiplication results 4h and 6d from
different block-B is required to be added, however, distributed
in the different adders at the first stage. This phenomenon
also happens to the results 5a and 7 f . Therefore, the adder
in the next stage has to finish two addition operations which
can decrease the hardware efficiency. To handle the congestion
problem, we design a column index comparator that rearranges
the data in a more hardware-efficient manner as shown in Figure
8 (a). The column index comparator checks the column index
of block-B and sets the values continuously whose column
indices are the same in block-B. By doing this, the accumulation
congestion is reduced. Note that the values in block-A and
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8 bits 4 bits 4 bits 16 bits 10 bits 4 bits 18 bits

mem2pe pe_num pe_id src_addr length dst_reg -

8 bits 4 bits 16 bits 16 bits 16 bits 4 bit

ld2mem mode src_addr length dst_addr -

8 bits 1 bit 4 bits 4 bits 16 bits 4 bits 4 bits 4 bits 19 bits

scatter dvu_id pe_id src_reg length stride replica dst_reg -

8 bits 4 bits 4 bits 4 bits 4 bits 16 bits 4 bits 20 bits

pe_mul mode pe_id src_reg1 src_reg2 length dst_reg -

8 bits 4 bits 4 bits 16 bits 16 bits 4 bits

rat pe_id src_reg rat_paramters length dst_reg

8 bits 4 bits 4 bits 4 bits 16 bits 4 bits 28 bits

compute pe_id src_reg1 src_reg2 length dst_reg -

8 bits 4 bits 4 bits 16 bits 10 bits 4 bits 18 bits

pe2mem pe_num pe_id dst_addr length src_reg -

8 bits 1 bits 4 bits 4 bits 16 bits 4 bits 1 bit 26 bits

switch valid switch_id src_reg length dst_reg acc_valid -

data transfer instruction

computation configuration instruction

8 bits 4 bits 16 bits 16 bits 16 bits 4 bit

store2mem mode src_addr length dst_addr -

Fig. 9. Architecture instructions.

block-B also need to be rearranged according to the column
index comparator, as shown in Figure 8.

G. Application Mapping

There exist different parallelization strategies for the same
tensor application. Different dataflow results in different
configuration of Morphling architecture which affects data
reuse, execution latency and energy cost. We begin with a
tensor application represented as a loop-based iteration domain
where each node is one loop instance in the original code.

We use polyhedral model to select different schedulings to
map tensor applications on Morphling. The polyhedral model
provides powerful abstractions to optimize loop nests with
regular accesses and captures a complex sequence of loop
transformations [5]. The objective function aims at minimizing
latency and energy cost. The constraints consist of resource
constraints, bandwidth constraints and energy budget. The
resource constraints include the number of multipliers that
determines the node number that can be executed in parallel
and the length of the accumulator lane which determines
how many partial sums can be accumulated together. The
bandwidth constraints limited the number of nodes accessed
in parallel which further affects the time scheduling function.
In summary, the optimization problem turns to be an integer
linear programming (ILP) problem. Then we enumerate the
solutions whose resource or bandwidth utilization is lower than
30%, and choose the solution with minimum latency.

H. Architecture Instructions

We design a set of instructions which are used to configure
the Morphling architecture. Figure 9 summarizes instructions
for data transfer and computation configuration. Each instruc-
tion is aligned to 64 bits which are sufficient to support recon-
figurable features and data address. Data transfer instruction
supports variable data size across different dimensions. The
off-chip data transfer instructions have three modes. Vectors
and matrices are two commonly used tensor types which are

TABLE IV
MORPHLING AREA AND POWER BREAKDOWN

Component Area
(mm2)

Area
(%)

Power
(mW)

Power
(%)

PE

Router 0.005 4.5 0.72 7.0
DVU 0.036 34.0 0.22 2.1
FU 0.031 29.1 3.68 35.8

Memory 0.034 32.3 5.66 55.1
Total 0.105 100 10.3 100

Switch
AL 0.013 42.8 3.91 45.4

Memory 0.017 57.8 4.70 54.6
Total 0.030 100 8.61 100

Morphling 64×PEs
64×Switches 8.62 mm2 1.21 W

TABLE V
BENCKMARKS OF DIFFERENT TENSOR OPERATIONS.

Application Domain Tensor
operation Data size

Resnet[31] DNN 2D-CONV
GEMM

25M params
3.8G ops

ALS[6] Matrix
fabrication MTTKRP 480K×18K×2K

(Netflix )

SVM[21] Classifier GEMV 26K samps, 512 dim
128 categories

SpResnet[31] DNN SpMM 91.3% sparsity

specified as two data transfer modes. For the tensor that has
higher dimensions, the instruction can load length elements
from a given dimension and offset. mem2pe and pe2mem
are used to transfer data between on-chip scratchpad and
registers of PEs. Computation configuration instructions help
to configure the unit in each PE so that the PE can perform
specified tensor execution dataflow.

V. EXPERIMENTS

A. Methodology

Morphling configuration.The Morphling architecture is
organized as an 8×8 PE array and an 8×8 switch array. The
target data type is 16-bit fixed point. Each PE has 16 multipliers
with a 16-input reconfigurable adder tree. The scratchpad for
input and output tensor is a 512×16bit SRAM in the PE, and
the scratchpad in the switch is a 256×16bit SRAM. The design
is written in the Chisel hardware description language [3]. We
use Chisel to generate Verilog RTL. Then we use Synopsys
Design Compiler to estimate the chip area and total power
under the TSMC 28nm technology. The synthesized frequency
is 600MHz. Theoretically, the peak performance of Morphling
is 64×16×0.6 = 0.61 TOP/s. Table IV provides the detailed
area and power breakdown for Morphling at a total area of 8.62
mm2 and total power of 1.21 W . To evaluate the performance
of Morphling, we developed a cycle-accurate model based on
Chisel. All the required data are initially stored in DRAM where
the sparse matrices are stored in tiled-BCSR format. Morphling
interfaces with DRAM through multiple DDR channels. The
DRAM bandwidth is assumed to be 40 GB/s which provides
ample bandwidth for most tensor applications. For the input
data size that is larger than the size of on-chip scratchpad, we
divided the data into multiple tiles. For DRAM simulation, we
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measure the data size and the number of DRAM access from
Chisel tester. We build our polyhedral model based on Integer
Set Library (ISL) [45].

Other platforms. On GPUs, we run tensor applications on
Titan X using CuBLAS 10.0 [58] for dense tensor operations,
CuSPARSE 10.0 [60] for sparse tensor operations and CuDNN
6 [59] for deep learning applications. On CPUs, we evaluate
tensor operations on Intel processor i7-9700k using Pytorch
[67]. On FPGAs, we run experiments on Xilinx ZC706
FPGA. Our FPGA implementation is operated at 166MHz
frequency. The benchmark is implemented in OpenCL code
and synthesised using Xilinx SDx 2018.2 [86]. On TPUs, we
build a TPU-like platform for comparison. We model a 32×32
systolic engine which has the same computational ability as
Morphling. The estimated power is 0.78 W using Synopsys
Design Compiler under the same technology and synthesis
frequency as Morphling.

Benchmark. We first use the tensor algebra in Table I. Then,
we evaluate four real-world tensor applications as shown in
Table V. Resnet is a deep neural network for image recognition
which consists of many residual blocks [31]. We then prune
Resnet using the technique in [27, 28]. As a result, we achieve
91.3 % weight sparsity, and the average sparsity of input
images 43 %. We transform the sparse Resnet into a series of
SpMM and use it to evaluate the performance of Morphling.
Alternating least squares (ALS) is the most widely used method
for Canonical Polyadic Decomposition (CPD) where MTTKRP
is a core operation. We use Netflix as the data set which is
taken from Netflix Prize competition [6].

B. PE Latency Profiling

Figure 10 presents the cycle latency of three steps in
Morphling architecture. The latency of each step varies for
different tensor algebra due to different hardware configurations.
For dense tensor operations, the latency of the computation
step mainly depends on the activated stage in the adder tree.
The latency of the reduction step is affected by the data
transfer between PEs and the configuration of accumulator

lanes in the switch. GEMM, 2D-CONV and 3D-CONV are
computation-intensive operations and there exists data reuse
opportunities. GEMM1, 2D-CONV1 and 3D-CONV apply
dot-product parallelization with the input tensor broadcast
to multiple PEs. Therefore, they need extra cycles in the
computation step as the adder tree is activated. On the other
hand, GEMM2 and 2D-CONV2 are parallelized using outer-
product, which exploits SPSC reuse as the input tensor is
duplicated in the vectorization step. They also feature DPDC
reuse as they are implemented in a systolic array by configuring
the switch. They show lower latency in the computation step but
higher latency in the reduction, as the adder tree is inactivated
while the accumulator lanes is configured to gather the output.
KRP has no addition operation thus shows the lowest latency
of computation step and reduction step.

The latency of three steps for sparse tensor operations is
higher due to format decoding and data rearrangement. As
shown in Figure 8 (a), the vectorization involves column index
comparison to avoid congestion, which costs extra cycles.
Besides, the reconfigurable adder tree is dynamically configured
to determine the forward data, which leads to higher latency in
the computation step. For the reduction step, the gap between
dense and sparse operation is small as the indices within a
sparse block are continuous. SpMTTKRP-S2 applies block-
wise multiplication parallel pattern, which has low complexity.
therefore, it shows the lowest latency in the vectorization step
compared with other sparse operations.

C. PE Energy Breakdown

Figure 11(a) reports the energy breakdown for the modules
in the PE including routers, vectorization unit, function unit
and switch. The energy cost of the vectorization unit and
function unit mainly depends on the computation complexity.
The data transfer between the PE array and on-chip scratchpad
affects the energy cost of routers. The energy cost of switch
results from two aspects: 1) buffer controller to enable data
transfer between PEs; 2) accumulator lanes to support different
accumulation patterns.
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Fig. 13. Speedup of Morphling over GPU and state-of-the-art accelerators using synthetic matrices with sparsity(The sparsity is defined as the proportion of
non-zeros) varying from 0.9 to 0.001. The data of SCNN[62], Cambircon-X[89], SMASH[35], OuterSPACE[61] are from the original paper. The data of
SpArch [90], MatRaptor [72], Gamma [88] are obtained by simulator. The data of GPU-CuBLAS and GPU-CuSPARSE are measured on TitanX and obtained
using NV profiling.

GEMV, KRP and Stencil are communication-intensive op-
erators. These operations show low utilization of computing
resources such as function unit and the switch. Stencil requires
more switch resources because the switch array is configured
as a systolic array. Figure 11(b) shows the performance
and energy comparison results over FPGA platform. We
observe that Morphling can achieve higher speedup and energy-
efficiency for those computation-intensive operations, such as
GEMM, 2D-CONV and 3D-CONV. These operations show
a high resource utilization. Overall, we achieve 1.1X-7.4X
performance speedup and 1.3X-37X energy-efficiency over
FPGA. This benefit comes from the architectural advantage of
our reconfigurable design.

D. Dataflow Optimization

There exists a design space composed of different parallel
pattern choices for tensor applications. For the same tensor
operation, the optimal dataflow varies as the input tensor shape
and size change. The flexible execution model of Morphling
opens up the opportunities for design space exploration of
different parallel patterns.

We use the first 18 layers of GoogLeNet with varied tensor
sizes to evaluate the efficiency of different implementation
choice. These layers are composed of 2D-CONV, GEMM
(transformed from the convolution with 1×1 filter) and Pooling
(down-sampling operation without multiplication), which have
different behaviors. Figure 12 shows the results. The optimal
configuration varies across different layers resulting from the
diverse dimension size of the involved tensor. For example,
layer ”C2, C3, C5, C8” show higher hardware efficiency

by using dot-product parallelization because the size of the
parallelized dimension is large. Thanks to the polyhedral
mapping, Morphling always chooses the best parallel pattern.

E. Efficiency for Sparsity

Figure 13 shows the comparison with GPU, Cambricon-
X[89], OuterSPACE[61], SCNN [62] and SMASH [35]. The
baseline of GPU-CuSPARSE, OuterSPACE and SMASH
is set as dense GEMM in GPU-CuBLAS. The baseline of
Cambricon-X and SCNN is set as the dense version of their
architecture since these accelerators support both dense and
sparse operations. We also draw the line of theoretical speed
up calculated by (1/sparsity).

Compassion with GPU. Compared with GPU-CuBLAS,
when the sparsity is higher than 0.05, GPU-CuSPARSE shows
lower performance due to memory uncoalesing problem and
workload imbalance problem. Morphling inherently supports
sparse computation by extending the parallel pattern to tiled-
BCSR format under a unified execution model. More im-
portantly, tiled-BCSR format helps to balance the workload.
Therefore, Morphling can achieve nearly ideal performance
when the sparsity is high, and achieves around 10.8X speedup
compared with GPU-CuSPARSE when the sparsity is lower
than 0.01.

Comparison with ASIC accelerators. Morphling shows
1.6X-8.4X speedup and 1.2X-2.2X compared with SMASH
[35] and OuterSPACE [61] when the sparsity is lower than
0.01. SMASH uses a software encoding scheme based on
a hierarchy of bitmaps. This format shows highly-efficient
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indexing for output address, however, requires a decoding
module. OuterSPACE applies outer-product dataflow and has
a long linked list of partial sums that requires index sorting,
while the column comparator of Morphling has fewer inputs
and only checks equality. When the sparsity is high, Mor-
phling shows similar speedup compared with SCNN[62] and
Cambricon-X[89]. When the sparsity reduces to 0.2, Morphling
outperforms SCNN and Cambricon-X with 1.4X and 3.9X
speedup. SCNN uses the format that stores the number of non-
zero values followed by the number of zeros before each value.
This format incurs high overhead in the computation of the
output address. And Cambricon-X uses dot-product dataflow
which requires index comparison leading to low multiplier
utilization. We also build analytical simulator to estimate the
speedup of three state-of-the-art sparse accelerators, SpArch
[90], MatRaptor [72], Gamma [88]. SpArch [90] applied outer-
product based approach with a Huffman tree scheduler to merge
the results. When the sparsity is more than 0.1, SpArch shows
less speedup compared to traditional outer-product method
(CSC×CSR). This is because the encoding overhead of input
matrix and merge overhead of output matrix are large. Both
MatRaptor [72] and Gamma [88] employed row-wise product
(In Gamma, it is called Gustavson dataflow) that is similar
to our approach. We observe that MatRaptor and Gamma
exhibits a liitle higher speedup compared to Morphling due to
architectural efficiency and format efficiency. Morphling is a
much more general architecture that aims to handle various
tensor algebra, and adopts less complex format. The benefit
of MatRaptor comes from its C2SR format that improves the
memory coalescing, and merge queues to gather results in
parallel. On the other hand, Gamma proposed a new cache
design that is specific to minimize memory traffic.

Comparison with traditional formats. To demonstrate the
efficiency of tiled-BCSR, we depict the efficiency of two cases
using CSR and CSC format, where CSR(CSC)×CSC(CSR)
means the matrix A and matrix B are stored in CSR(CSC) and
CSC(CSR) format. Tiled-BCSR format outperforms CSR×CSC
approach with 1.1x-68.2x speedup. This is because CSR×CSC
needs an index comparison operation which can lead to a low
utilization of multipliers, while Morphling adopts row-wise
product operation which does not require index comparison. On
the other hand, Tiled-BCSR format shows 1.2X-18.1X speedup
compared with CSC×CSR approach. Though CSC×CSR
approach shows no index comparison, it results in a large
number of write operations with irregular output addresses.
Another benefit of tiled-BCSR format is it has a balanced
workload compared with CSR and CSC format.

F. Study of Real-world Tensor Applications

Here, we compare our design with state-of-the-art accel-
erators using four real-world tensor applications in Table V.
Specifically, we use 1024-PE design in Eyeriss-v2 [13], 4
Cambricon-F cores in Cambricon-F [91], the original design
in SCNN [62]. For other designs, we scale their design
to 1024 multiplier and build a cycle-accurate model for
evaluation. Figure 14 shows the performance speedup and
energy-efficiency of Morphling over these accelerators. As
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Fig. 14. Performance and energy-efficiency comparison using four tensor
benchmarks.

shown in Figure 14, Morphling can support a wide range
of tensor applications. Compared with general processors like
CPU and GPU, Morphling shows higher energy-efficiency with
comparable performance to GPU.

For Resnet, Morphling has attained 4.1X speedup and 677.7X
energy-efficiency compared with CPU. The performance of
Morphling is 0.47X of TitanX GPU due to the limited
computing resource, but Morphling achieves 44.7X energy-
efficiency. Compared with TPU, SCNN-dense[62], Eyeriss-
v2[13], DaDiannao[14], Morphling shows 1.9X, 1.6X, 1.3X,
2.1X speedup, respectively. Resnet algorithm has different
tensor operations and diverse dimension size. Morphling
can flexibly configure the hardware for the tensor operation.
Morphling shows 29X, 2.8X speedup and 4666.7X, 256.3X
energy-efficiency compared with CPU and GPU, and Morphling
achieves similar performance to Cambricon-F. For Resnet-
sparse, we transform it to SpMM operation. Morphling achieves
18X and 7X speedup compared with CPU and GPU. We
also compare to other sparse ASIC accelerators, including
SCNN-sparse[62], Eyeriss-v2[13], Cambricon-X [89], EIE
[26], OuterSpace [61], SIGMA [69]. The difference has
been disscused in Section V-E. EIE [26] adopts CSC format
where dot-product is performed in different PEs, leading to
high PE communication overhead. Morphling shows similar
performance compared to SIGMA, which also applies a
reconfigurable adder tree to gather the results.

VI. RELATED WORK

Coarse-grained reconfigurable architectures. CGRAs has
been developing rapidly since the 2000s and continue to
attract increasing interest [15, 20, 36, 47, 55, 63]. Recently,
the demand for massive parallel computation has grown
continuously in the field of CGRAs [16, 66, 70, 77, 78, 87].
Plasticine [66] is a CGRA written in Chisel. At architecture
level, Plasticine is designed for general application, which
is not tensor specific and lacks a flexible execution model to
guide the hardware dataflow. Gorgon [78] and Capstan [70] are
derivatives of the Plasticine, which are designed for enabling
sparsity. Aurochs [77] is extended from Gorgon [78] where
it introduces a threading model that extracts parallelism from
irregular data structures. Thinker [87] can be reconfigured
for Hybrid NNs that can process different layer types of
NNs in parallel. Thinker only focuses on CNN domain, while
Morphling targets a wide range of tensor applications. [57] also
proposed an execution model using stream dataflow. However,
this execution model is supported by designing peripheral



This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3135322, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

12

control logic. In contrast, Morphling design a tensor-specific
PE and accumulator lanes to support the execution model. [16]
proposes a reconfigurable systolic array that was composed of
sparse processing units (SPU). SPU is a general CGRA design
which primarily focuses on stream-join control for general data
dependency, while Morphling is a tensor-specific CGRA which
targets applications with massive MACs.

Dense tensor accelerators. As many applications involve
tensor computation, various tensor accelerators are designed for
acceleration. However, these accelerators are usually focused
on a single operation, e.g., convolution or matrix multiplication.
Tensor Processing Unit (TPU) [34] is developed by Google
for neural networks (NNs) processing in datacenters. TPU is a
systolic data flow of the Matrix Multiply Unit. Cambricon [48]
is a domain-specific instruction set architecture for convolution
and GEMM. Diannao, Pudiannao, Shidiannao, Dadiannao
[11, 14, 18, 46] are a set of architectures extended from
Cambricon as machine learning accelerators. DySER [23] is a
tensor accelerator that features with functionality specialization
and parallelism specialization. Similar to our reconfigurable
tree, DySER contains a reduction tree. The difference is that our
adder tree has additionals logic that helps to handle irregular
sparsity with high hardware efficiency. Convolution Engine
[68] has the reconfigurability for different types of convolution.
Convolution Engine also contains a flexible reduction tree
to fuse multiple instructions, while the main goal of our
reconfigurable adder is to provide support for sparsity.

Sparse tensor accelerators. [13, 25, 26, 44, 50, 51, 89, 92]
are sparse DNN accelerators. MAERI [41] uses tree-based in-
terconnects for data distribution and reduction which is similar
to our reconfigurable adder tree. T2S [74] is a framework
to generate high-performance systolic arrays for dense tensor
operations. ExTensor [32] and Tensaurus [73] are sparse tensor
accelerators targeting MTTKRP, TTM, SpMV and SpMM
operations. OuterSPACE [61] and SIGMA [69] are SpMM ac-
celerators. OuterSPACE applies outer-product dataflow. SIGMA
proposes a flexible systolic array for different matrix size and a
collection network for partial sum accumulation. The collection
network decodes the sparse tensor in bitmap format, which
shows higher hardware overhead compared with using BCSR
format. SMASH [35] proposed a hierarchical bitmap format
and a bitmap management unit for decoding in CPU platform.

VII. CONCLUSION

In this paper, we propose Morphling, a reconfigurable archi-
tecture for efficiently executing both dense and sparse tensor
operations. We first propose a flexible tensor execution model
which consists of three steps including tensor vectorization,
vector computation and output reduction. The computation step
features three types of parallel patterns that are many-to-one,
one-to-many and one-to-one. The dense and sparse operations
differ in the implementation of these patterns. To cooperated
with the execution model, we proposed tiled-BCSR format
that packs nonzeros into tiles. The architecture of Morphling
features a reconfigurable PE array with switches for data
communication. The PE can be dynamically configured to
support flexible hardware dataflow and enable different types

of data reuse. Morphling is synthesized in 28nm TSMC library
with 8.62 mm2 area at 600MHz frequency and achieves 13.4X,
677.7X, 44.7X energy efficiency over Xilinx ZC706 FPGA,
Intel i7-9700K CPU, NVIDIA TitanX GPU.
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