
2546 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 8, AUGUST 2022

FCNNLib: A Flexible Convolution Algorithm
Library for Deep Learning on FPGAs

Yun Liang , Senior Member, IEEE, Qingcheng Xiao , Liqiang Lu , and Jiaming Xie

Abstract—Convolution features huge complexity and demands
high computation capability. Among hardware platforms, field
programmable gate array (FPGA) emerges as a promising
solution for its substantial available parallelism and energy effi-
ciency. Besides, convolution can be implemented with different
algorithms, including conventional, general matrix–matrix mul-
tiplication (GEMM), Winograd, and fast Fourier transformation
(FFT) algorithms, which are diverse in arithmetic complexity,
resource requirement, etc. Different convolutional neural network
(CNN) models have different topologies and structures, favoring
different convolution algorithms. In response, software libraries
such as cuDNN provide a variety of computational primitives
to support these algorithms. However, supporting such libraries
on FPGAs is challenging. First, multiple algorithms can share
the FPGA resources spatially as well as temporally, introduc-
ing either reconfiguration overhead or resource underutilization.
Second, FPGA implementation remains a significant challenge
for library developers. It typically requires significant specialized
hardware knowledge. In this article, we propose FCNNLib, an
efficient and scalable convolution algorithm library on FPGAs.
To coordinate multiple convolution algorithms on FPGAs, we
develop three schedulings: 1) spatial; 2) temporal; and 3) hybrid,
which exhibit different tradeoffs in latency and throughput. We
explore these schedulings by balancing the reconfiguration over-
head, resource utilization, and optimization objectives of the
CNNs. Then, we provide efficient and tunable algorithm tem-
plates that allow performance tuning through performance and
resource models. To arm the users, FCNNLib exposes a set of
interfaces to support high-level application designs. We demon-
strate the usability of FCNNLib with state-of-the-art CNNs.
FCNNLib achieves up to 44.6× and 1.76× energy efficiency in
various scenarios compared with software libraries for CPUs and
GPUs, respectively.

Index Terms—Convolution, deep learning, FPGAs, library.

I. INTRODUCTION

ADVANCES in deep convolutional neural networks
(CNNs) are leading to emerging applications, such as

image recognition [1], semantic segmentation, and speech
recognition [2], [3]. Convolutions are becoming the base of
today’s and future computing systems. With the prevalence of

Manuscript received 14 September 2020; revised 26 June 2021; accepted
13 August 2021. Date of publication 26 August 2021; date of current version
19 July 2022. This work was supported in part by the Key-Area Research and
Development Program of Guangdong Province under Grant 2019B010155002,
and in part by PKU-Baidu Fund under Project 2020BD024. This article
was recommended by Associate Editor P. A. Beerel. (Corresponding author:
Yun Liang.)

The authors are with the Center for Energy-Efficient Computing
and Applications, School of EECS, Peking University, Beijing 100871,
China (e-mail: ericlyun@pku.edu.cn; walkershaw@pku.edu.cn;
luliqiang@pku.edu.cn; jmxie@pku.edu.cn).

Digital Object Identifier 10.1109/TCAD.2021.3108065

CNNs, there is an increasing demand for hardware acceleration
as both CNNs training and inference demand a tremendous
amount of computation. As a result, hardware accelerators,
such as GPUs, field programmable gate arrays (FPGAs),
and customized ASICs, have been employed to accelerate
DNNs [4]–[11]. Among them, FPGAs emerges as a promis-
ing solution owing to its high available parallelism and
flexibility [12]–[17].

On the other hand, different algorithms for the essential
convolution operation in CNNs have been studied [18]. These
algorithms include conventional, general matrix–matrix multi-
plication (GEMM), Winograd, and fast fourier transformation
(FFT) algorithms. Conventional algorithm is performed on the
original features, while the other three algorithms transform
data to other domains and transform the results back after the
computation. These algorithms are diverse in arithmetic com-
plexity and dataflow. As a result, the performance and resource
utilization of these algorithms may vary considerably, depend-
ing on the CNN models and layer parameters. For instance,
by using the Winograd algorithm in cuDNN [19], the number
of multiplications in VGGNet [20] can be reduced to half of
the conventional algorithm, leading to about 2.7× inference
latency speedup. GEMM and Winograd algorithms can col-
laborate in ResNet [21] and provide 1.4× latency speedup.
Due to the importance of convolution operations, highly opti-
mized convolution libraries supporting different algorithms,
such as Arm Compute Library [22], math kernel library for
deep neural networks (MKL-DNNs) [23], and cuDNN [19],
are commonplace for CPU and GPU platforms. For instance,
cuDNN provides up to eight different algorithms to perform
convolutions on GPUs and is widely used in deep learning
frameworks, such as Tensorflow [24] and PyTorch [25].

However, such systematic library support of different con-
volution algorithms is not quite here for FPGAs, in large part
because FPGAs are highly reconfigurable and difficult to pro-
gram. First, implementing multiple convolution algorithms is
hard. Multiple algorithms can share the FPGA resources spa-
tially as well as temporally. Spatial sharing is facilitated by
configuring different portions of FPGAs for different algo-
rithms; and temporal sharing by reconfiguring the FPGAs to
implement different algorithms over time. Temporal sharing
achieves high flexibility at the expense of extra reconfigu-
ration overhead. Spatial sharing avoids the overhead but at
the cost of potential resource underutilization. The applica-
tion programmers do not yet have reliable intuition about
which sharing or scheduling mechanism should be used.
Furthermore, different models or different layers of the same

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information,
see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0002-9076-7998
https://orcid.org/0000-0001-6230-5342
https://orcid.org/0000-0002-3801-6847

LIANG et al.: FCNNLib: FLEXIBLE CONVOLUTION ALGORITHM LIBRARY FOR DEEP LEARNING ON FPGAs 2547

(a) (b) (c)

Fig. 1. Dataflow of different convolution algorithms. (a) Conventional algorithm. (b) GEMM algorithm. (c) Winograd and FFT algorithms.

models may favor different algorithms and call for different
scheduling techniques.

Second, FPGAs programming remains to be a significant
challenge for library developers. The wide adoption of the
library may be hindered by low-level programming models.
Recent advances in high-level synthesis (HLS) for FPGAs
have lowered the programming barrier, which is evidenced by
the wide adoption of commercial tools, including Intel FPGA
SDK for OpenCL [26] and Xilinx Vivado HLS [27]. However,
the original software implementation may not be suitable for
hardware. To maximize algorithm performance, programmers
need to extensively restructure the source code to realize the
unique hardware features. Moreover, the HLS tools offer var-
ious optimization directives (e.g., loop unrolling, pipelining,
and memory partitioning) with nontrivial performance and
resource tradeoffs, which are difficult to explore.

In this article, we propose FCNNLib, an efficient and
scalable convolution algorithm library for CNN inference on
FPGAs. We propose three scheduling techniques to coor-
dinate multiple algorithms on FPGAs. Temporal scheduling
allows multiple algorithms to occupy FPGA resources over
time. Spatial scheduling shares resources among multiple algo-
rithms. Hybrid scheduling combines the benefits of spatial
and temporal scheduling. We further improve these schedul-
ing with the assistance of optimization algorithms to address
reconfiguration overhead and hardware underutilization issues.
Then, to accommodate efficient convolution implementation
on FPGAs, we design an optimized template for each convo-
lution algorithm in HLS. These templates provide configurable
factors and are highly optimized with HLS directives. We also
develop performance and resource models to find the optimal
factors subject to resources constraints. Moreover, FCNNLib
provides high-level library interfaces to facilitate the users to
explore different algorithms and schedulings for a variety of
CNN models.

Prior works mainly focus on implementing one convolu-
tion algorithm on FPGAs [28]–[31]. FCNNLib is the first
to provide systematic library support of various convolution
algorithms on FPGAs. A preliminary version of this arti-
cle was presented in [32]. In [32], we propose and compare
three multialgorithm scheduling techniques. In this exten-
sion, we provide details about library implementations. In
particular, we show the loop optimizations made to the
HLS-based algorithm templates. We also use resource and
performance models to determine algorithm combinations and

resource allocations. Overall, the key contributions are as
follows.

1) We propose a hardware library FCNNLib, which pro-
vides efficient and scalable implementations of multiple
convolution algorithms for inference on FPGAs.

2) We develop three multialgorithm scheduling techniques,
including spatial, temporal, and hybrid scheduling.

3) We provide highly optimized algorithm templates,
performance, and resource models for performance
tuning.

4) We provide a succinct set of interfaces to facilitate the
users to explore the library.

We evaluate FCNNLib with state-of-the-art CNN models on
embedded and cloud platforms. The experiments demonstrate
that designs offered by FCNNLib achieve better or comparable
performance and efficiency results compared with dedicated
FPGA accelerators. When compared with off-the-shelf soft-
ware libraries for CPUs and GPUs, FCNNLib achieves up to
44.6× and 1.76× energy efficiency, respectively.

II. BACKGROUND AND MOTIVATION

A. Convolution Algorithms

Convolution in CNNs is to shift a group of 3-D filters over
an input tensor and outputs a result tensor. Assume the input
is composed of N feature maps with size H′ × W ′, while M
filters all have a K ×K ×N shape. Each filter convolves with
the input tensor at stride S to obtain one feature map with size
H ×W in the output tensor so that features are extracted. In
this way, after convolving all filters, M output feature maps
are generated. The following equation details the convolution
operation for each output element:

outm,h,w =
N,K,K∑

n=1,r=1,c=1

inn,h×S+r,w×S+c × filterm,r,c,n. (1)

The basic convolution implementation is in line with the above
formula using six nested loops, as shown in Fig. 1(a). We refer
to it as conventional algorithm.

Convolutions can be converted to matrix multiplications. As
Fig. 1(b) shows, each filter is flattened into a row of filter
matrix with length K × K × N. For the input matrix, each
K × K × N input feature map tile corresponding to an output
element is also flattened into a column. By this way, multi-
plying a row and a column is equivalent to the convolution
operation for an output element. In this article, we refer to

2548 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 8, AUGUST 2022

TABLE I
COMPARISONS OF CONVOLUTION ALGORITHMS

this implementation as the GEMM algorithm. Winograd and
FFT algorithms are also known as fast algorithms, where they
batch the computation of multiple output tiles by exploiting
the structural similarity in an input tile. More concretely, they
first transform the input tile and filter into Winograd and FFT
domains, then perform elementwise multiplication (EWMM),
and finally, transform the EWMM results back to the original
output tile. Fig. 1(c) illustrates their dataflows.

B. Convolution Algorithms on FPGAs

In FPGAs, DSPs and look up tables (LUTs) are respon-
sible for arithmetic and logic operations, respectively, while
block RAMs (BRAMs) and flip-flops (FFs) are used for
buffering data. In recent years, FPGAs have been demon-
strated as a promising solution to accelerate CNNs [33]–[35].
Convolution algorithms implemented on FPGAs differ in arith-
metic complexity, resource, accuracy, and adaptability, as
Table I shows.

Arithmetic Complexity: The arithmetic complexity of a con-
volution algorithm represents the number of multiplications
performed for each output element. Therefore, it is linear
with DSP consumption on FPGAs. The arithmetic complexity
of conventional and GEMM algorithms is M × N × K × K,
according to (1). Winograd and FFT algorithms replace partial
multiplications with transformations. Hence, the complexity
can be reduced to M × N × P2/Q2, where P2 and Q2 are the
input and output tile sizes as shown in Fig. 1(c). A typical tile
size (P = 6, Q = 4) reduces the complexity by 4X compared
with conventional and GEMM algorithms.

Memory Resource: Memory resource represents both on-
chip BRAMs and off-chip bandwidth. BRAM is used to buffer
data, and its usage mainly depends on the total data size
and data access pattern. The GEMM algorithm increases the
data size by K2 times since inputs are flattened into vectors.
Winograd and FFT algorithms require to access the elements
within a tile simultaneously by consuming more BRAMs.

Logic Resource: Logic resources of conventional and
GEMM algorithms are mainly for building memory
interconnect between processing elements (PEs) and BRAMs.
Winograd and FFT algorithms use logic resources for the
transformation functions. These functions use either constant
matrix multiplication or Fourier transformations, which can be
implemented using shift operations on FPGAs.

Accuracy: Using low-precision data in CNN applications is
a common optimization on the FPGA platform. It has been
demonstrated that 4–8 bit fixed point type can maintain high
CNN accuracy [36]–[38] for conventional and GEMM algo-
rithms [28]–[30]. However, Winograd and FFT algorithms
introduce errors at their transformation stages. They require
higher data precision to maintain CNN accuracy.

TABLE II
LAYER PREFERENCE ON CONVOLUTION ALGORITHMS.

THE TARGET PLATFORM IS XILINX ZC706

Adaptability: Conventional and GEMM achieve consis-
tent performance for convolutions with different structures.
However, the benefits of Winograd and FFT algorithms fade
as the convolution strides increase. The reason is that data
are organized as tiles in Winograd and FFT algorithms. When
strides are larger than 1, Winograd and FFT algorithms pro-
cess the convolutions as if their strides were 1 and screen out
the valid outputs after computation.

Table II lists four real-world CNN models where layers
have diverse parameters. We observe that different convolu-
tion layers favor different convolution algorithms on FPGAs.
For instance, the optimal algorithm for one layer (filter
size 3, stride 1) is Winograd, while the optimal algorithm
for another layer (filter size 7, stride 2) is conventional.
Using the best algorithm for a single layer provides the ideal
peak performance. However, if one fixed algorithm is chosen
for the entire model, the overall performance drops sharply
compared to the layer peak performance. For instance, the
overall performance drops more than 3× (548.9 versus 178.6)
compared to the layer performance if we use the Winograd
algorithm consistently for DenseNet. The drop indicates that
using a single algorithm for all the layers or models will cause
great sacrifice on performance. Different layers and models
desire different convolution algorithms. Inspired by this, we
design an efficient library that provides a variety of algorithms
to implement convolution on FPGAs.

III. FCNNLIB OVERVIEW

FCNNLib employs three components: 1) multialgorithm
scheduling; 2) algorithm templates; and 3) programming
interfaces. The scheduling coordinates multiple convolu-
tion algorithms on FPGAs. The templates enable FCNNLib
to generate efficient designs automatically. Finally, the
programming interfaces ease the FPGA programming hurdle.

1) Multialgorithm Scheduling: We propose three schedul-
ing techniques, as shown in Fig. 2. Temporal scheduling
dynamically swaps algorithms at runtime according
to the layer parameters. In the figure, we decide a

LIANG et al.: FCNNLib: FLEXIBLE CONVOLUTION ALGORITHM LIBRARY FOR DEEP LEARNING ON FPGAs 2549

(a)

(b)

(c)

Fig. 2. Multialgorithm schedulings. (a) Temporal scheduling. (b) Hybrid
scheduling. (c) Spatial scheduling.

reconfiguration point in the target CNN and change the
original conventional algorithm into GEMM algorithm.
To enable temporal scheduling, FPGAs have to be recon-
figured to replace the implementation for one algorithm
with another one. Spatial scheduling lets each algo-
rithm occupy partial on-chip resources and maintains
the same architecture through the whole CNN inference.
Therefore, no reconfiguration is required. In Fig. 2, three
algorithms are implemented in an architecture, and each
algorithm CU handles partial layers. Hybrid schedul-
ing partitions CNN models into several groups that each
occupies the whole on-chip resources. Reconfiguration is
triggered only when all workloads in a group are accom-
plished. In the figure, the CNN model is partitioned into
two groups, resulting in two architectures. We discuss
more details in Section IV.

2) Algorithm Templates: For all convolution algorithms,
FCNNLib provides highly optimized HLS templates
with parameters, such as data type, feature map shapes,
filter size, stride, and parallelism. The templates can
be used for performance tuning on different FPGAs.
They form the architectures for the three schedulings
(spatial architecture, temporal architecture, and hybrid
architecture). We give more details in Section V.

3) Interfaces: We provide a set of high-level interfaces for
library users. Users can specify the CNN model, FPGA
platform, and a scenario. Then, FCNNLib will automat-
ically map the model onto FPGAs by exploring various
convolution algorithms and scheduling combinations.
Grammars and examples are given in Section VI.

IV. MULTIALGORITHM SCHEDULING

A. Spatial Scheduling

In spatial scheduling, we partition hardware resources
(resource partitioning) for convolution algorithms so that each

Algorithm 1: Resource Partitioning Algorithm
Input: CNN_model, R, max_iter
Output: final_PTN

1 iter← 0, PTN ← the initial resource partitioning solution
2 # PTN is a vector 〈Rconven., RGEMM , RWino., RFFT 〉
3 while iter ≤ max_iter do
4 PTN′ ← generate a new solution based on PTN
5 arch′ ← build a spatial architecture based on PTN′
6 ceiling_latency′ ← evaluate the ceiling inference latency of

arch′ when processing CNN_model
7 if ceiling_latency′ < current_latency then
8 PTN ← PTN′
9 else

10 PTN ← PTN′, with certain possibility
11 final_PTN ← the solution with the min ceiling latency
12 return final_PTN

algorithm is implemented within its resource partitioning as
a separated CU. The main challenge is the potential low
utilization of spatial architectures: if we assign each convo-
lution workload to a single algorithm CU, the CUs of other
algorithms are idle. Hence, we also partition a convolution
workload (workload partitioning) and assign subworkloads
to all employed algorithms. Solving the resource partition-
ing and workload partitioning together results in enormous
design space. Hence, we divide and conquer spatial scheduling
through two stages.

Resource Partitioning Stage: The objective of this stage is
to build a good spatial architecture based on a resource parti-
tioning solution. Here, we need to answer: 1) how to express
a partitioning solution; 2) how to evaluate a solution (spatial
architecture); and 3) how to find a good solution.

First, we define the hardware resource constraints R of
FPGAs as a vector 〈#BRAMs, #DSPs, . . . 〉, where each ele-
ment represents the total amount of a type of resources. For
a convolution algorithm algo, its resource partitioning Ralgo is
also a vector similar to R. Accordingly, a partitioning solution
can be represented as a long vector 〈Rconven., RGEMM, RWino.,
RFFT〉.

Second, a reasonable latency upper bound of a spatial archi-
tecture is the execution time when each workload is processed
by its favorite algorithm. We term this upper bound as the
ceiling inference latency and use it to evaluate resource par-
titioning solutions. The best solution minimizes the ceiling
inference latency.

Finally, we explore different partitioning solutions using a
simulated annealing algorithm as shown in Algorithm 1. For
each partitioning solution PTN′, we build a spatial architecture
(line 5) with our resource models described in Section V-B.
Then, we calculate the ceiling inference latency of the archi-
tecture with our performance models (line 6). If the ceiling
latency of PTN′ is the current lowest, we accept PTN′ as
the current solution. Otherwise, we accept PTN′ with a pos-
sibility (lines 7–10). In this way, the solution moves toward
the global lowest ceiling latency. We generate and evaluate a
new partitioning solution based on the current solution PTN
(line 4). More clearly, we randomly change the vector val-
ues of PTN to simulate resource increase or decrease. The

2550 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 8, AUGUST 2022

Fig. 3. Workload partitioning methods. (a) Layer based. (b) Feature based.
(c) Channel based. (d) Filter based.

algorithm continues till the ceiling latency converges, or the
iteration number exceeds the given maximum max_iter. In the
end, Algorithm 1 returns the current best partitioning solution
with which we generate a spatial architecture.

Workload Partitioning Stage: The goal of this stage is to
balance the workloads among convolution algorithms with a
good partitioning. First, we identify four partitioning meth-
ods: 1) layer-based; 2) feature-based; 3) channel-based; and
4) filter-based methods, as shown in Fig. 3. Layer-based
method assigns each algorithm with the workload of an entire
layer, which is a coarse-grained workload unit. More impor-
tantly, algorithms can work concurrently only when there is
no data dependency between the assigned layers as shown in
Fig. 3(a). However, independent workloads are usually limited
in CNN models, especially in sequential CNNs. The feature-
based method divides each output feature map to several tiles,
each of which needs to be produced by an algorithm. Similarly,
the channel-based method divides output channels instead of
output feature maps. Feature-based and channel-based meth-
ods all generate nonoverlapped output regions, as shown in
Fig. 3(b) and (c). To achieve the workload balance, they
require either large feature maps or substantial number of
channels. The filter-based method performs fine-grained par-
titioning to each filter so that each algorithm produces the
partial result of the whole outputs. For example, a 5× 5 filter
can be divided into one 3×3, two 3×2, and one 2×2 filters.
However, as shown, using this method, all algorithms would
simultaneously update the whole output feature maps and may
lead to memory conflicts.

We employ a hybrid of feature-based and channel-based
methods for workload partitioning in FCNNLib. The insight
is that within a CNN model, the shallow layers usually have
large feature maps and a few channels, while the deep layers
are on the opposite. Using this hybrid partitioning method,

Fig. 4. Workflow of the ML-based partitioning engine.

the feature-based method and channel-based method are able
to work in a complementary manner.

Then, we develop a machine-learning-based engine to
decide the partitioning strategy (method and ratio) specific to
each workload. As shown in Fig. 4, the engine consists of a
partitioning generator and an arbiter. The generator proposes
multiple partitioning strategies for a workload. The arbiter
selects one out of the proposed strategies. Specifically, the
arbiter is implemented as a multilayer perceptron (MLP). Its
inputs include workload parameters and the partitioning strat-
egy to be evaluated. It outputs the relative execution time of
the input strategy, as we only care about the relative mer-
its of partitioning strategies proposed by the generator. The
relative time prediction is enabled by a rank loss objective
function [42]. The objective function obj is

obj =
∑

a,b

log
(

1+ e−sign(lata−latb)×(preda−predb)
)

where a and b are two partitioning strategies, sign is the
Signum function, lat is the actual execution latency, and pred
is the relative latency predicted by the MLP.

Since the MLP is architecture specific, we train it with
runtime statistics. We let the generator propose partitioning
strategies. Then, we launch them on the spatial architecture
and profile their actual execution time, which is used to train
the MLP with the rank loss function. The profiling and training
process only takes hours as we have already fixed the spatial
architecture in the resource partitioning stage.

B. Temporal Scheduling

Temporal scheduling enables multiple algorithms based on
the FPGA reconfigurability. Naturally, layer boundaries are
potential reconfiguration points. A reconfiguration benefits the
following layer as the layer can use the optimal algorithm.
However, it also incurs extra overhead, which is the time to
reprogram the FPGA arrays. Taking this tradeoff into account,
we develop a dynamic programming algorithm to determine
necessary reconfiguration points. The algorithm insight is that
when implementing a group of layers, we can either use a
single algorithm for all these layers or find an intermediate
point to switch to another algorithm. Thus, we formulate the
recursion formula as follows:

T(i, j) = min

{
min

i≤k<j

{
T(i, k)+ T(k + 1, j)+ Treconf

SZbatch

}
, Tone(i, j)

}

(2)

LIANG et al.: FCNNLib: FLEXIBLE CONVOLUTION ALGORITHM LIBRARY FOR DEEP LEARNING ON FPGAs 2551

Algorithm 2: Group Algorithm
Input: i, j, R
Output: arch

1 opt_arch = INIT(none_unit, max_latency)
2 current_arch = INIT(none_unit, no_latency)
3 Config(current_arch, i, j)
4 return opt_arch

5 Function Config(current_arch, i, j)
6 if i > j then
7 if current_arch.lat < opt_arch.lat then
8 opt_arch = current_arch
9 return

10 foreach convolution algorithm algo do
11 foreach algorithm parameters p for layer i under

hardware resource constraints do
12 res = ResourceModel(algo, p, layer[i])
13 lat = PerfModel(algo, p, layer[i])
14 new_arch.lat = Max(current_arch.lat, lat)
15 new_arch.res = current_arch.res+ res
16 if new_arch.lat ≥ opt_arch.lat then
17 break
18 if MeetConstraints(new_arch.res) then
19 Config(new_arch, i+ 1, j)

where T(i, j) represents the minimal latency for layers i to
j after considering reconfiguration. Tone(i, j) is the latency
of using a single convolution algorithm without reconfigu-
ration. Treconf is the overhead and SZbatch is the input batch
size. FCNNLib amortizes Treconf over batched CNN inputs to
improve throughput. To derive Tone(i, j), we enumerate pro-
cessing layers i to j with the four convolution algorithms. For
each algorithm, we first build a compute unit subject to the
platform resource constraints. Then, we evaluate the latency
when processing layers i to j with the compute unit according
to algorithm performance models. Among the four algorithms,
the minimal evaluated latency is set as Tone(i, j).

C. Hybrid Scheduling

In our hybrid architecture, each layer in the given CNN is
processed by a dedicated CU. The problem lies in that the lim-
ited hardware resources cannot accommodate all the hundreds
of layers in modern complex CNNs such as ResNet. Hence,
we have to partition the CNN layers into multiple groups. For
each group, FCNNLib generates an individual architecture on
the target FPGA. The reconfiguration is triggered only when
all workloads in a group are accomplished. Furthermore, lay-
ers within a group are organized as a fine-grained pipeline [43]
to improve the overall throughput.

Similar to temporal scheduling, there exists a tradeoff
between group number and performance. More groups mean
better algorithm customization and performance optimization
opportunities but incur more reconfiguration overhead at the
same time. To address this tradeoff, we use the same dynamic
programming algorithm used in temporal scheduling, as (2)
shows. However, here Tone(i, j) denotes the latency of layers
from i to j when they are organized as a group. To obtain
Tone(i, j), we develop a branch-and-bound algorithm as shown
in Algorithm 2. The algorithm explores the architecture for the
group composed of layer i to j subject to hardware resource

Listing 1. FFT algorithm template.

constraints R, as shown in Algorithm 2. Starting from the ith
layer, we enumerate various algorithms and parameters for
each layer in a depth-first fashion (lines 5–19). We evaluate the
latency and resource usage of each layer with the performance
and resource models (lines 12 and 13). Since layers form a
fine-grained pipeline, the group latency equals approximately
to the latency of the slowest layer within the architecture
(line 14). Once the jth layer is reached, we update the cur-
rent best group latency and architecture if necessary. Tone(i, j)
is the final group latency. Two constraints bound the search
space. For one thing, the total resource usage of all layers
is constrained by the on-chip resource (line 18). For another,
we use the best historical total latency to bound the following
traversal (line 16). If the current group latency already exceeds
the best latency, we skip the following layers and try another
implementation for the current layer.

V. ALGORITHM TEMPLATES

In this section, we first introduce the optimizations made
to algorithm templates. Then, we provide resource and
performance models to determine template parameters.

A. HLS-Based Loop Optimization

Convolution algorithms can be written as nested loops
in C-based HLS templates. For each convolution algorithm,
we design templates by employing four loop optimizations,
including tiling, interchange, pipelining, and unrolling. We
enable these optimizations through code restructure and HLS
directives. Listing 1 gives the code of optimized FFT algorithm
template.

Tiling: One of the common performance bottlenecks in
convolution algorithms is the high off-chip data access
latency. Paralleled computation in convolutions requires

2552 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 8, AUGUST 2022

Tb/s bandwidth while FPGAs usually have Gb/s off-chip
bandwidth. We employ a two-level tiling to decouple data
transfer and parallel computation. Accordingly, we refer to
these two-level tiling as storage tiling and parallelism tiling,
respectively. Each loop in convolution algorithm is split
into three subloops through two-level tiling. For instance, in
Listing 1, the loop associated with output channel M is split
into three loops in lines 7, 19, and 24. The loop for stor-
age tiling (line 7) determines the total number of elements
stored on-chip, while the loop for parallelism tiling (line 19)
determines the number of elements involved in parallel compu-
tation each time. After this two-level tiling, we use a ping-pong
buffer between the storage loop (line 7) and the parallelism
loop (line 19) to overlap the data transfer and computation.

Different convolution algorithms have distinct data access
and compute patterns. Therefore, they have distinct optimal
tiling factors. Assume a loop before performing tiling has trip
count DIM. We use DIMs and DIMp to represent the tiling fac-
tors of storage loop and parallelism loop, respectively. Taking
Listing 1 for instance, the storage factor and parallelism factor
of the M loop are Ms (line 7) and Mp (line 19), respectively.
With this denotation, we summarize the tiling factors for each
convolution algorithm in Table III.

Then, we determine the optimal value for each tiling fac-
tor. Among all factors, some can be predetermined according
to compute and data access patterns of algorithms. As illus-
trated in Fig. 1, conventional and GEMM algorithms calculate
each output element individually, while FFT and Winograd
algorithms use tiles as the basic computation units. We set
parallelism factors for H and W dimension loops based on
this compute pattern. We set Hp and Wp as 1 in the con-
ventional algorithm so that the partial results of one output
element is calculated. For FFT and Winograd algorithms, we
set Hp and Wp as their output tile sizes. In the FFT algo-
rithm, we determine the tile size from two perspectives. First,
we use Cooley-Turkey FFT, which restricts the input tile
size to the power of 2. Second, using 8 × 8 input tile and
6× 6 output tile leads to 3.45× reduced arithmetic complex-
ity with little transformation overhead [18]. Larger tile sizes
require more on-chip memory and significant transformation
overhead, while smaller tile sizes bring less arithmetic saving.
Similarly, in the Winograd algorithm, we employ a 4× 4 out-
put tile size and set Hp and Wp as 4, as shown in Table III.
On the other hand, storage factors can be determined based on
the on-chip memory size of the target platform. In this way,
we fix all storage factors and most parallelism factors in the
table by analyzing the algorithm details. There also exist some
parallelism factors that cannot be constrained. We leave them
to be explored in Section IV.

Interchange: After decoupling data transfer and computa-
tion, we reorder all the subloops to ensure that elements of
off-chip inputs, outputs, and filters are accessed in burst mode.
More concretely, we let all storage loops be the outer loop in
the template (lines 7–10 in Listing 1). They are all responsible
for off-chip data transfer. Accordingly, all parallelism loops
become the inner loops and are abstracted as the compute
function (line 16–26), taking charge of the core computations
of each algorithm.

TABLE III
TILING FACTORS ON ZC706. H, W , M, N , K , AND K ARE

WORKLOAD DIMENSIONS IN LINE WITH (1)

Then, three phases are naturally formed for all convolution
algorithms: 1) data load; 2) computation; and 3) data store
(line 12–14). Data fetched in the load phase are stored off-
chip after computation. Since data dependency exists among
these three phases, we organize them into a pipeline manner to
overlap data transfer with computation, improving the overall
throughput. In this way, the data transfer time can be success-
fully hidden for compute-bounded workloads. This phase-level
pipelining is enabled by DATAFLOW directive.

Pipelining and Unrolling: Finally, we exploit the parallelism
for the computation loops, which is the core computation. We
choose to pipeline the most outer parallelism loop (lines 17
and 18) and unroll the rest parallelism loops (lines 19–22).
Loop unrolling creates multiple instances for the loop body
so that they can be processed in parallel. Loop pipelining is to
schedule all operations within the loop in a pipeline manner.
These two operations are enabled by PIPELINE and UNROLL
directives. Furthermore, parallel computing requires massive
data access. To maximize off-chip bandwidth, we pack sequen-
tial elements in filters or feature maps into a single wide scalar
(line 2). To sustain sufficient on-chip bandwidth, we split a
buffer into multiple memory banks, each of which has two
access ports. The off-chip and on-chip bandwidth optimization
are enabled by DATAPACK and PARTITION directives.

B. Resource and Performance Models

To enable performance tuning for different tiling factors, we
develop accurate resource and performance models for each
algorithm, as summarized in Table IV.

Resource Models: Resource models are used to model the
occupied resource given tiling factors. Among all the on-chip
resources of FPGAs, DSPs and logic resources are mostly
spent on performing convolution computation, while on-chip
memories are used as buffers. We model each type of resource
for each algorithm as follows.

1) DSP Model: The number of multiplication is linear with
the parallelism factors for all algorithms. We model DSP
usage as the product of parallelism factors. Taking con-
ventional algorithm for example, partial results of Mp

outputs are generated by Np×Kp×Kp inputs each time.
Thus, the DSP usage is Mp × Np × Kp × Kp.

2) Memory Model: We model input, output, and filter
buffers individually. Since these buffers are all parti-
tioned into banks, we consider both bank number and

LIANG et al.: FCNNLib: FLEXIBLE CONVOLUTION ALGORITHM LIBRARY FOR DEEP LEARNING ON FPGAs 2553

TABLE IV
RESOURCE AND PERFORMANCE MODELS. α IS THE DSP CONSUMPTION PER MULTIPLICATION. β IS THE BRAM SIZE. γ AND δ ARE THE

COEFFICIENTS IN LINEAR REGRESSION. Depth, II , AND Freq ARE THE PIPELINE DEPTH, ITERATION INTERVAL, AND FREQUENCY, RESPECTIVELY

the memory usage for each bank. Taking the output
buffer in conventional CU for instance, it is parti-
tioned into Hp × Wp × Mp banks and each consumes
�Hs/Hp	�Ws/Wp	�Ms/Mp	/β BRAMs, as shown.

3) Logic Resource Model: As aforementioned, algorithms
have distinct usage for logic resources. For conventional
and GEMM algorithms, we use logarithmic functions
to model LUT usage for memory interconnects. For
Winograd and FFT algorithms, we use linear regres-
sion to model LUT usage in transformation and inverse
transformation.

Performance Models: Since the core computation and data
transfer are overlapped, the latency is bounded by the max-
imum of data transfer time and computation time. For com-
putation time Tcpt, since all operations are organized into a
pipeline manner, we model the cycle number using iteration
interval, iteration number, and pipeline depth. Taking the
Winograd algorithm as an example, the iteration number is the
product of the total input tile number and channel iteration
(�Ms/Mp	 × �Ns/Np). The iteration interval and pipeline
depth are platform-dependent constants. For data transfer time
Tcomm, it is bounded by loading input feature maps, filters,
or storing output feature maps. We use the maximal transfer
size to model transfer time by modeling the bitwidth of each
element and the platform bandwidth.

Data transfer and computation are iterated NUMrpt times to
accumulate all partial sums and generate final outputs. NUMrpt
is determined by the original buffer size and on-chip buffer
size. Putting it all together, we model the overall latency using
Tcpt, Tcomm, and NUMrpt, as shown in Table IV.

To validate our models, we compare the predicted and
actual results on different FPGAs. On average, our resource
and performance models achieve 84.6% and 93.8% accuracy,
respectively. FPGA synthesis may cause extra resources for
on-chip bus and register, which is not modeled. The accu-
racy loss of latency results may come from the discrepancy of
actual and peak bandwidth and DRAM access latency.

Listing 2. Example of deploying ResNet with FCNNLib.

VI. FCNNLIB INTERFACES

We also design a set of high-level interfaces, as listed in
Table V. When using FCNNLib, there are two steps: 1) hard-
ware design generation and 2) multialgorithm scheduling.
The design generation step is to generate a CNN accelerator
employing multiple convolution algorithms. We provide get-
Params interface to determine parameters for each algorithm
template. With these parameters, users can instantiate and inte-
grate algorithm CUs to form a design via configIPs interface.
The scheduling step is to schedule multiple algorithms on
the generated accelerator. Users feed the design with input
data and get inference results through scheduleAlgo interface.
Specific to spatial scheduling, balanceWorkload interface is
provided to balance workloads among algorithms with the help
of the ML-based partitioning engine. Moreover, we provide
autoScheduling interface, which automatically explores the
algorithm and scheduling combinations and returns a design
with the best performance.

Listing 2 is an example of deploying ResNet with spatial
scheduling on the Xilinx ZC706 board. Subject to resource
constraints, getParams returns algorithm parameters leading to

2554 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 8, AUGUST 2022

TABLE V
PROGRAMMING INTERFACES IN FCNNLIB

TABLE VI
COMPARISONS WITH PREVIOUS FPGA ACCELERATION WORKS

the highest performance. The resource constraints are obtained
by Algorithm 1 in spatial scheduling. FCNNLib generates a
ResNet accelerator after instantiating CUs (line 3). For each
convolution workload in ResNet, balanceWorkload interface
partitions it into subworkloads specific to the ResNet accel-
erator (line 7). Finally, scheduleAlgo interface launches the
subworkloads on the accelerator and collects results. As for
temporal and hybrid schedulings, scheduleAlgo would also
reconfigure FPGAs when necessary.

VII. EXPERIMENTS

A. Experimental Setup

Benchmarks: We have integrated FCNNLib into
PyTorch [25]. To evaluate its efficiency, we use the state-of-
the-art CNNs in Table II; VGGNet [20], and AlexNet [49].
AlexNet, VGGNet, GoogLeNet, ResNet, and DenseNet are
widely used in classification tasks, while DQN is an emerging
reinforcement learning method that provides impressive
results for game applications. VGGNet is more regular than
the other five CNNs as VGGNet only uses 3 × 3 filters. We
treat fully connected layers as convolutions with 1× 1 filters
and fuse activation functions with convolutions.

Methodology: We first compare designs generated by
FCNNLib with dedicated FPGA accelerators. Then, we

compare the three multialgorithm schedulings as the batch size
scales. We further compare FCNNLib with software libraries
on CPU and GPU platforms in Table VII. Finally, we test the
accuracy and scalability of FCNNLib.

Platforms: We use FPGAs designed for both embedded and
cloud scenarios. ZC706 board is an embedded SoC platform,
consisting of one XC7Z045 FPGA chip, dual ARM Cortex-
A9 CPUs, and 1-GB DDR3 memory. Xilinx VU9P board is a
PCIe-based board with substantial on-chip resources and has
been used in AWS F1 instance. For both platforms, we set all
implementation frequency as 200 MHz and use a 16-bit fixed-
point data type. We use Xilinx Vivado SDx(v2018.2) [27]
for design synthesis. We measure the dynamic power of the
whole ZC706 SoC with a meter and estimate the VU9P power
through Xilinx Power Estimator [50].

B. FPGA Accelerator Comparison

Prior techniques [29], [30], [44]–[48] shown in Table VI use
a single convolution algorithm for CNN inference scenarios
where the batch size is 1. For fair comparisons, we use spa-
tial scheduling in FCNNLib to generate designs, which are
also given in the table. For VGGNet, FCNNLib only uses the
Winograd algorithm showing high performance for the 3× 3
convolutions. For other irregular CNNs, FCNNLib integrates a

LIANG et al.: FCNNLib: FLEXIBLE CONVOLUTION ALGORITHM LIBRARY FOR DEEP LEARNING ON FPGAs 2555

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 5. Comparisons among three schedulings on ZC706. The x-axis is batch size ranging from 1 to 64. (a) AlexNet latency. (b) ResNet latency.
(c) GoogLeNet latency. (d) DenseNet latency. (e) DQN latency. (f) AlexNet throughput. (g) ResNet throughput. (h) GoogLeNet throughput.
(i) DenseNet throughput. (j) DQN throughput.

high-performance algorithm (Winograd or FFT) with a more
general one (conventional or GEMM). As the table shows,
Winograd and GEMM algorithms are employed for ResNet,
GoogLeNet, and DenseNet, while FFT and GEMM algorithms
are used for AlexNet and DQN.

We use ResNet, AlexNet, and DQN to demonstrate algo-
rithm choices.

1) In ResNet, 3 × 3 convolutions and 1 × 1 convolutions
are the most common workloads. Winograd and GEMM
are the most efficient algorithms for the two types of
workloads, respectively. As a result, FCNNLib’s spa-
tial scheduling lets Winograd collaborates with GEMM.
It determines the resource partitioning and balances
the runtime workloads of the two algorithms. Overall,
FCNNLib achieves 118.9-ms latency and 190.19 GOPS
throughput for ResNet on the ZC706 board, while
14.6-ms latency and 1547.84 GOPS throughput on
VU9P device. Previous works [29], [30] employ only
the conventional algorithm. By combining multiple
algorithms for ResNet, FCNNLib spatial scheduling
achieves up to 1.315× latency improvement compared
with [29], 1.292× DSP efficiency improvement com-
pared with [30].

2) In AlexNet, the first convolutional layer employs 11×11
filters with stride as 4, which is extremely unfriendly
to Winograd or FFT algorithms. Therefore, FCNNLib
uses the GEMM algorithm for this layer and fully
connected layers. In addition, FCNNLib uses the FFT
algorithm to efficiently process other 3 × 3 and 5 × 5
layers. Previous work [44] accelerates AlexNet using the
Winograd algorithm, which cannot efficiently process
the 11 × 11, 5 × 5, and 1 × 1 convolutions. Compared
with [44], FCNNLib achieves 1.254× throughput and
1.942× energy efficiency.

3) DQN consists of three 5 × 5 convolutions with strides
being 2 and a final fully connected layer. The FFT algo-
rithm is optimal for 5 × 5 convolutions. FCNNLib’s
spatial scheduling achieves 0.05-ms latency and meets
real-time requirements.

Among the FPGA accelerators listed in Table VI,
works [45], [46], and Xilinx DPU [48] are developed in

RTL codes, while the others and FCNNLib are in HLS.
FCNNLib can achieve comparable or even better DSP effi-
ciency compared with the RTL designs. Though RTL enables
a fine-grained control for memory and data transfer, HLS
can already achieve a high DSP utilization such as RTL.
Thus, HLS-based designs are efficient enough for convolu-
tions bounded by computations. More importantly, the benefits
brought by different convolution algorithms significantly sur-
pass the architecture improvements. For conventional and
GEMM algorithms, the theoretical upper bound of their DSP
efficiency is 2 × Frequency (0.4 GOPS/DSP in our settings).
Fast algorithms reduce the arithmetic complexity and enhance
the DSP efficiency. Through scheduling convolution algo-
rithms, FCNNLib improves the DSP efficiency by 1.849× to
5.664× for VGGNet. In addition, FCNNLib provides high
productivity, good platform portability, and high performance
for different FPGAs and CNN models. Xilinx DPU supports
different models by an AI library. Other FPGA accelerators
cannot be easily ported to modern neural networks, such as
GoogLeNet and DenseNet.

C. Scheduling Comparison

We vary the batch size from 1 to 64 and compare batch
latency and throughput results of the three scheduling in
FCNNLib on ZC706 FPGA, as illustrated in Fig. 5.

For AlexNet, hybrid scheduling can implement all lay-
ers without reconfiguration. The low latency of AlexNet
only allows temporal scheduling to perform one reconfig-
uration between the second and third convolutional layers
when the batch size is 64. Therefore, the throughput of tem-
poral scheduling remains the same until the 64 batch size.
In the DQN case, since DQN consists of only four convo-
lution workloads, all schedulings generate designs without
reconfiguration. Hybrid scheduling achieves constantly better
throughput results since each layer is processed by a dedicated
CU with customized algorithms and parameters.

ResNet, GoogLeNet, and DenseNet are all highly structured
CNNs and show similar patterns in Fig. 5. Here, we take

1One DSP slice of GXA7 platform is equivalent to two DSP slices of
ZC706 platform when performing 16× 8 fixed-point multiplications.

2556 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 8, AUGUST 2022

TABLE VII
CROSS-PLATFORM COMPARISONS. THERMAL DESIGN POWER IS USED FOR INTEL XEON E5-2630

ResNet for a detailed analysis. The building block of ResNet
is residual blocks consisting of one 1 × 1 convolution, one
3 × 3 convolution, and one 1 × 1 convolution. Specifically,
ResNet-152 uses 50 residual blocks to extract features. In
spatial scheduling, FCNNLib generates a design (Winograd
and GEMM algorithms) independent of the batch size and
processes input images in sequence. Hence, the batch latency
results of spatial scheduling are linear with the batch size.
Temporal scheduling chooses to perform no reconfiguration to
avoid the overhead. It generates a ResNet design employing
only the Winograd algorithm. Thus, the latency results of
temporal scheduling are also linear with the batch size and
higher than spatial scheduling latency. In contrast to spatial
or temporal schedulings, hybrid scheduling always performs
reconfiguration. Table VIII gives the group information and
algorithm choices. Hybrid scheduling partitions ResNet into 17
groups. Due to the repeating residual blocks, some partitioned
groups have the same convolution workloads and can share
an architecture. Thus, FCNNLib generates five individual
architectures as shown in the table and takes six reconfigu-
rations, leading to around 197.4-ms overhead. As the batch
size increases, the overhead is better amortized, improving
the throughput from 80.67 GOPS to 253.2 GOPS, as shown
in Fig. 5(g). Hybrid scheduling surpasses spatial scheduling
for several reasons. First, though the two schedulings almost
use the same algorithm combination (Winograd and GEMM),
spatial scheduling fixes the parallelism and storage of algo-
rithm CUs, while hybrid scheduling generates different CUs
for different workloads. As Table VIII shows, groups 2–16
are all composed of residual blocks but differ in the number
and size of feature maps. Hybrid scheduling generates three
architectures with different parallelism factors and storage fac-
tors to improve performance. Second, data transfer can be the
bottleneck of 1 × 1 convolutions in residual blocks. Hybrid
scheduling organizes the workloads in an architecture as a
pipeline such that data transfer bottlenecks are eliminated. In
addition, hybrid scheduling uses the FFT algorithm for the
first 7× 7 convolution to enhance the performance further.

Depending on a series of factors, including model topol-
ogy, resources and reconfiguration overhead of the platform,

and available batch size, the three scheduling techniques
vary in latency and throughput improvements and require
careful selection. We also compare the multialgorithm schedul-
ings with single algorithm designs. Designs generated by
FCNNLib achieve up to 2.28× latency speedup in the embed-
ded scenario and 2.95× throughput speedup in the cloud
scenario.

D. Library Comparison

Then, we compare our hardware library for FPGA
platforms, FCNNLib, with software libraries ARM
Compute Library v19.02 [22], MKL-DNN v0.18 [23],
and cuDNN 9.0 [19] for CPUs and GPUs, respectively.
We let these libraries automatically select algorithms
through get_convolution_method, convolution_auto,
and cudnnGetConvolutionForwardAlgorithm interfaces,
respectively. We conduct comparisons in both embedded
and cloud scenarios. For the embedded scenario, we com-
pare the Xilinx ZC706 FPGA board, ARM-A57 CPU, and
NVIDIA Jetson TX1 GPU board. For the cloud scenario,
the Xilinx VU9P FPGA board, Intel Xeon E5-2630 CPU,
and NVIDIA P100 GPU are compared. We use 16-bit data
types for FPGAs and GPUs, while a 32-bit floating-point
type for CPUs. The reason is that either the platform (ARM-
A57) or the library (MKL-DNN) does not support 16-bit
floating-point types. Other configurations are also listed in
Table VII.

As the table shows, FCNNLib provides constantly better
energy efficiency for DQN, ResNet, and DenseNet com-
pared with software libraries. FCNNLib with hybrid schedul-
ing can also achieve comparable performance with cuDNN
for GoogLeNet. Overall, FCNNLib provides up to 44.6×
and 1.76× energy efficiency compared with MKL-DNN and
cuDNN, respectively.

E. Accuracy

Currently, FCNNLib supports 8- to 16-bit fixed-point and
32-bit floating-point datatypes. The performance of FCNNLib
improves as the bitwidth decreases. Take accelerating ResNet

LIANG et al.: FCNNLib: FLEXIBLE CONVOLUTION ALGORITHM LIBRARY FOR DEEP LEARNING ON FPGAs 2557

TABLE VIII
DETAILS OF HYBRID SCHEDULING FOR RESNET

WHEN THE BATCH SIZE IS 64

(a) (b)

Fig. 6. Top-1 accuracy using different bitwidths and libraries. The x-axis
represents bitwidths. (a) VGG-16. (b) ResNet.

in embedded scenarios for instance. FCNNLib provides 78.41
GFLOPs to 410.23 GOPs as the datatype varies from 32-bit
floating point to 8-bit fixed point.

The inference accuracy of FCNNLib is also sensitive to
datatypes. In Fig. 6, we test the inference accuracy of cuDNN
and FCNNLib as the bitwidth scales. For P100 GPU, cuDNN
uses FP32 CUDA Cores to process both 16- and 32-bit floating
point. We convert data less than 16 bits into 16-bit float-
ing point and call cuDNN. Thus, the accuracy loss comes
from CNN models. For A100 GPU, cuDNN can directly pro-
cess 8-bit fixed-point (INT8) data with tensor cores. Then,
the accuracy gap between P100 and A100 is from hardware.
In contrast, FCNNLib customizes hardware for different
bitwidths.

As Fig. 6 shows, FCNNLib restricts the accuracy loss
within 0.4% till we use an 8-bit fixed point. The accuracy
loss is negligible compared with cuDNN. However, the accu-
racy results of cuDNN and FCNNLib drop dramatically when
using 8-bit data. The reason is threefold. First, overflows hap-
pen more and more frequently as data precision decreases.
Also, the data transformations of fast algorithms introduce
extra errors. In addition, the INT8 accuracy gap between
FCNNLib and A100 is caused by our pretrained model.
Though we can further fine-tune our 8-bit model or apply
FCNNLib to 6-bit or other quantized models, the quantization
process is beyond the scope of this work.

F. Scalability

To test the scalability, we set eight different resource con-
straints that lie in the range from small-scale embedded SoC,
large-scale embedded MPSoC, to cloud devices, as shown in
Fig. 7. These designs all employ spatial scheduling. FCNNLib

Fig. 7. Scalability results of FCNNLib.

can generate designs that provide performance nearly linear
with available resources.

VIII. RELATED WORKS

The implementation of convolution algorithms on FPGAs
has been studied in a number of previous work. Xiao et al. [43]
and Lu et al. [44] implemented the Winograd algorithm on
FPGAs. Zhang and Prasanna [51] have implemented the FFT
algorithm for both CNN training and inference. Suda et al. [52]
applied the GEMM algorithm to CNN acceleration. As for
the conventional algorithm, most of the previous FPGA
CNN accelerators are based on it [34]. CHaiDNN [53] and
FP-DNN [54] are HLS-based DNN Libraries, which only
implement the conventional algorithm. No library has been
developed to integrate all these algorithms and to reduce pro-
gramming difficulty when scheduling multiple algorithms like
FCNNLib does. More recent dedicated FPGA accelerators
focus on improving each convolution algorithm by optimiz-
ing the data movement and parallelism strategy [28], [31].
They are orthogonal to FCNNLib’s multialgorithm scheduling
techniques.

Convolution libraries for CPU and GPU platforms have
been developed and optimized for years. Vendors usually
provide their libraries. Intel MKL-DNN [23] is a general
library that includes DNN building blocks optimized for Intel
CPUs and GPUs. Arm Compute Library [22] includes a col-
lection of low-level functions optimized for Arm Cortex-A
CPUs and Arm Mali GPUs, targeting computer vision, and
machine learning applications. NVIDIA cuDNN [19] is a
GPU-accelerated library that provides highly optimized imple-
mentations for standard DNN routines. AMD MIOpen [55]
is a machine learning library that provides similar functions
to cuDNN. There also exist third-party DNN libraries such
as [56]. Most of these libraries include heterogeneous convo-
lution algorithms and provide primitives that help in algorithm
selection. In addition, several of previously proposed effec-
tive optimizations for machine learning kernels on CPUs and
GPUs [57]–[70] can be potentially integrated into libraries.

IX. CONCLUSION

In this article, we proposed a convolution algorithm library
FCNNLib consisting of highly optimized algorithm templates,
three multialgorithm schedulings, and programming interfaces.

2558 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 8, AUGUST 2022

We designed and optimized tunable templates for all convolu-
tion algorithms. Then, we explore spatial, temporal, and hybrid
schedulings assisted with optimization algorithms. FCNNLib
also provides a series of programming interfaces to ease
the FPGA programming hurdle. The experiments using state-
of-the-art CNNs demonstrate that FCNNLib achieves up to
44.6× and 1.76× energy efficiency compared with software
libraries for CPUs and GPUs, respectively.

REFERENCES

[1] C. Ding, S. Wang, N. Liu, K. Xu, Y. Wang, and Y. Liang, “REQ-
YOLO: A resource-aware, efficient quantization framework for object
detection on FPGAs,” in Proc. ACM/SIGDA Int. Symp. Field Program.
Gate Arrays, 2019, pp. 33–42.

[2] Y. Zhang, W. Chan, and N. Jaitly, “Very deep convolutional networks
for end-to-end speech recognition,” in Proc. IEEE Int. Conf. Acoust.
Speech Signal Process. (ICASSP), New Orleans, LA, USA, 2017,
pp. 4845–4849.

[3] J. Liu, G. Wang, P. Hu, L.-Y. Duan, and A. C. Kot, “Global context-
aware attention LSTM networks for 3D action recognition,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), vol. 7. Honolulu,
HI, USA, 2017, p. 43.

[4] R. Prabhakar et al., “Plasticine: A reconfigurable accelerator for parallel
patterns,” IEEE Micro, vol. 38, no. 3, pp. 20–31, May/Jun. 2018.

[5] W. Wahby, T. Sarvey, H. Sharma, H. Esmaeilzadeh, and M. S. Bakir,
“The impact of 3D stacking on GPU-accelerated deep neural networks:
An experimental study,” in Proc. IEEE Int. 3D Syst. Integr. Conf. (3DIC),
San Francisco, CA, USA, 2016, pp. 1–4.

[6] S. Yin et al., “A high throughput acceleration for hybrid neural
networks with efficient resource management on FPGA,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 38, no. 4, pp. 678–691,
Apr. 2019.

[7] H. Sharma et al., “Bit fusion: Bit-level dynamically composable archi-
tecture for accelerating deep neural network,” in Proc. 45th Annu. Int.
Symp. Comput. Archit., Los Angeles, CA, USA, 2018, pp. 764–775.

[8] L. Lu et al., “TENET: A framework for modeling tensor dataflow based
on relation-centric notation,” in Proc. ACM/IEEE 48th Annu. Int. Symp.
Comput. Archit. (ISCA), Valencia, Spain, 2021, pp. 720–733.

[9] Q. Xiao, S. Zheng, B. Wu, P. Xu, X. Qian, and Y. Liang, “HASCO:
Towards agile HArdware and software co-design for tensor computa-
tion,” in Proc. ACM/IEEE 48th Annu. Int. Symp. Comput. Archit. (ISCA),
Valencia, Spain, 2021, pp. 1055–1068.

[10] Y. Liang, L. Lu, and J. Xie, “Omni: A framework for integrat-
ing hardware and software optimizations for sparse CNNs,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 40, no. 8,
pp. 1648–1661, Aug. 2021.

[11] Y. Liang et al., “An efficient hardware design for accelerating
sparse CNNs with NAS-based models,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., early access, Mar. 17, 2021,
doi: 10.1109/TCAD.2021.3066563.

[12] Z. Li, L. Liu, Y. Deng, S. Yin, Y. Wang, and S. Wei, “Aggressive
pipelining of irregular applications on reconfigurable hardware,” in Proc.
ACM/IEEE 44th Annu. Int. Symp. Comput. Archit. (ISCA), Toronto, ON,
Canada, 2017, pp. 575–586.

[13] H. Cho, P. Oh, J. Park, W. Jung, and J. Lee, “FA3C: FPGA-accelerated
deep reinforcement learning,” in Proc. 24th Int. Conf. Archit. Support
Program. Lang. Oper. Syst., 2019, pp. 499–513.

[14] J. Lambert, S. Lee, J. Kim, J. S. Vetter, and A. D. Malony, “Directive-
based, high-level programming and optimizations for high-performance
computing with FPGAs,” in Proc. Int. Conf. Supercomput., 2018,
pp. 160–171.

[15] S. Wang et al., “C-LSTM: Enabling efficient LSTM using structured
compression techniques on FPGAs,” in Proc. ACM/SIGDA Int. Symp.
Field Program. Gate Arrays, 2018, pp. 11–20.

[16] X. Wei, Y. Liang, P. Zhang, C. H. Yu, and J. Cong, “Overcoming data
transfer bottlenecks in DNN accelerators via layer-conscious memory
managment,” in Proc. ACM/SIGDA Int. Symp. Field Program. Gate
Arrays, 2019, p. 120.

[17] L. Lu, J. Xie, R. Huang, J. Zhang, W. Lin, and Y. Liang, “An effi-
cient hardware accelerator for sparse convolutional neural networks on
FPGAs,” in Proc. IEEE 27th Annu. Int. Symp. Field Program. Custom
Comput. Mach. (FCCM), San Diego, CA, USA, 2019, pp. 17–25.

[18] A. Lavin and S. Gray, “Fast algorithms for convolutional neural
networks,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,
pp. 4013–4021.

[19] NVIDIA Corporation. (2019). NVIDIA cuDNN. [Online]. Available:
https://developer.nvidia.com/cudnn

[20] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” 2014. [Online]. Available:
arXiv:1409.1556.

[21] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Las Vegas, NV, USA, 2016, pp. 770–778.

[22] Arm Limited. (2019). Arm Compute Library. [Online]. Available:
https://www.arm.com/why-arm/technologies/compute-library

[23] Intel Corporation. (2019). Intel MKL-DNN. [Online]. Available:
https://software.intel.com/mkl

[24] M. Abadi et al., “Tensorflow: A system for large-scale machine learn-
ing,” in Proc. 12th USENIX Conf. Oper. Syst. Design Implement., 2016,
pp. 265–283.

[25] A. Paszke et al., “Automatic differentiation in pytorch,” in Proc. 31st
Conf. Neural Inf. Process. Syst., 2017, pp. 1–4.

[26] Intel Corporation. (2019). Intel FPGA SDK for OpenCL. [Online].
Available: https://www.intel.com/content/www/us/en/software/
programmable/sdk-for-opencl/overview.html

[27] Xilinx Inc. (2019). Xilinx Vivado High-Level Synthesis. [Online].
Available: https://www.xilinx.com/products/design-tools/vivado/
integration/esl-design.html

[28] A. Azizimazreah and L. Chen, “Shortcut mining: Exploiting cross-layer
shortcut reuse in DCNN accelerators,” in Proc. IEEE Int. Symp. High
Perform. Comput. Archit. (HPCA), Washington, DC, USA, 2019.

[29] S. I. Venieris and C.-S. Bouganis, “fpgaConvNet: Mapping regular and
irregular convolutional neural networks on FPGAs,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 30, no. 2, pp. 326–342, Feb. 2019.

[30] X. Wei, Y. Liang, X. Li, C. H. Yu, P. Zhang, and J. Cong, “TGPA: Tile-
grained pipeline architecture for low latency CNN inference,” in Proc.
IEEE/ACM Int. Conf. Comput.-Aided Design (ICCAD), San Diego, CA,
USA, Nov. 2018, pp. 1–8.

[31] Y. Ma, M. Kim, Y. Cao, S. Vrudhula, and J.-S. Seo, “End-to-end scalable
FPGA accelerator for deep residual networks,” in Proc. IEEE Int. Symp.
Circuits Syst. (ISCAS), Baltimore, MD, USA, 2017, pp. 1–4.

[32] Q. Xiao, L. Lu, J. Xie, and Y. Liang, “FCNNLib: An efficient and flexi-
ble convolution algorithm library on FPGAs,” in Proc. 57th ACM/IEEE
Design Autom. Conf. (DAC), San Francisco, CA, USA, 2020, pp. 1–6.

[33] H. Sharma et al., “DNNWEAVER: From high-level deep network mod-
els to FPGA acceleration,” in Proc. Workshop Cogn. Archit., 2016,
pp. 1–6.

[34] M. Alwani, H. Chen, M. Ferdman, and P. Milder, “Fused-layer CNN
accelerators,” in Proc. 49th Annu. IEEE/ACM Int. Symp. Microarchit.,
Taipei, Taiwan, 2016, p. 22.

[35] H. Zeng, R. Chen, C. Zhang, and V. Prasanna, “A framework for gen-
erating high throughput CNN implementations on FPGAs,” in Proc.
ACM/SIGDA Int. Symp. Field Program. Gate Arrays, 2018, pp. 117–126.

[36] P. Judd, J. Albericio, T. Hetherington, T. M. Aamodt, and A. Moshovos,
“Stripes: Bit-serial deep neural network computing,” in Proc. 49th Annu.
IEEE/ACM Int. Symp. Microarchit. (MICRO), Taipei, Taiwan, 2016,
pp. 1–12.

[37] S. Sharify, A. D. Lascorz, K. Siu, P. Judd, and A. Moshovos, “Loom:
Exploiting weight and activation precisions to accelerate convolu-
tional neural networks,” in Proc. 55th Annu. Design Autom. Conf.,
San Francisco, CA, USA, 2018, p. 20.

[38] B. McDanel, S. Teerapittayanon, and H. T. Kung, “Embedded binarized
neural networks,” in Proc. Int. Conf. Embedded Wireless Syst. Netw.,
2017, pp. 168–173.

[39] C. Szegedy et al., “Going deeper with convolutions,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., Boston, MA, USA, 2015, pp. 1–9.

[40] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Honolulu, HI, USA, 2017, pp. 4700–4708.

[41] V. Mnih et al., “Human-level control through deep reinforcement
learning,” Nature, vol. 518, pp. 529–533, Feb. 2015.

[42] C. Burges et al., “Learning to rank using gradient descent,” in Proc.
22nd Int. Conf. Mach. Learn. (ICML), 2005, pp. 89–96.

[43] Q. Xiao, Y. Liang, L. Lu, S. Yan, and Y.-W. Tai, “Exploring hetero-
geneous algorithms for accelerating deep convolutional neural networks
on FPGAs,” in Proc. Design Autom. Conf., Austin, TX, USA, 2017,
pp. 1–6.

http://dx.doi.org/10.1109/TCAD.2021.3066563

LIANG et al.: FCNNLib: FLEXIBLE CONVOLUTION ALGORITHM LIBRARY FOR DEEP LEARNING ON FPGAs 2559

[44] L. Lu, Y. Liang, Q. Xiao, and S. Yan, “Evaluating fast algorithms for
convolutional neural networks on FPGAs,” in Proc. IEEE 25th Annu.
Int. Symp. Field Program. Custom Comput. Mach. (FCCM), Napa, CA,
USA, 2017, pp. 101–108.

[45] Y. Ma, N. Suda, Y. Cao, S. Vrudhula, and J.-S. Seo, “ALAMO: FPGA
acceleration of deep learning algorithms with a modularized RTL com-
piler,” Integration, vol. 62, pp. 14–23, Jun. 2018. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167926017304777

[46] X. Zhang et al., “DNNExplorer: A framework for modeling and explor-
ing a novel paradigm of FPGA-based DNN accelerator,” in Proc. 39th
Int. Conf. Comput.-Aided Design, 2020, pp. 1–9. [Online]. Available:
https://doi.org/10.1145/3400302.3415609

[47] C. Zhang, G. Sun, Z. Fang, P. Zhou, P. Pan, and J. Cong, “Caffeine:
Toward uniformed representation and acceleration for deep convolutional
neural networks,” IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 38, no. 11, pp. 2072–2085, Nov. 2019.

[48] Xilinx Inc. (2021). DPU for Convolutional Neural Network.
[Online]. Available: https://www.xilinx.com/products/intellectual-
property/dpu.html

[49] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classifica-
tion with deep convolutional neural networks,” in Advances in Neural
Information Processing Systems. Red Hook, NY, USA: Cuuran, 2012,
pp. 1097–1105.

[50] Xilinx Inc. (2021). Xilinx Power Estimator. [Online]. Available:
https://www.xilinx.com/products/technology/power/xpe.html

[51] C. Zhang and V. Prasanna, “Frequency domain acceleration of convolu-
tional neural networks on CPU-FPGA shared memory system,” in Proc.
ACM/SIGDA Int. Symp. Field Program. Gate Arrays, 2017, pp. 35–44.

[52] N. Suda et al., “Throughput-optimized OpenCL-based FPGA accelerator
for large-scale convolutional neural networks,” in Proc. ACM/SIGDA Int.
Symp. Field Program. Gate Arrays, 2016, pp. 16–25.

[53] Xilinx Inc. (2019). Xilinx Power Estimator. [Online]. Available:
https://github.com/Xilinx/CHaiDNN

[54] Y. Guan et al., “FP-DNN: An automated framework for mapping deep
neural networks onto FPGAs with RTL-HLS hybrid templates,” in Proc.
IEEE Int. Symp. Field Program. Custom Comput. Mach., Napa, CA,
USA, 2017, pp. 152–159.

[55] Advanced Micro Devices Inc. (2019). AMD MIOpen. [Online].
Available: https://gpuopen.com/compute-product/miopen

[56] J. Fang, H. Fu, W. Zhao, B. Chen, W. Zheng, and G. Yang, “swDNN: A
library for accelerating deep learning applications on sunway taihulight,”
in Proc. IEEE Int. Parallel Distrib. Process. Symp. (IPDPS), Orlando,
FL, USA, 2017, pp. 615–624.

[57] C. Hong, A. Sukumaran-Rajam, I. Nisa, K. Singh, and P. Sadayappan,
“Adaptive sparse tiling for sparse matrix multiplication,” in Proc. 24th
Symp. Principles Pract. Parallel Program., 2019, pp. 300–314.

[58] C. Hong et al., “Efficient sparse-matrix multi-vector product on GPUs,”
in Proc. 27th Int. Symp. High Perform. Parallel Distrib. Comput., 2018,
pp. 66–79.

[59] L. Ning and X. Shen, “Deep reuse: Streamline CNN inference on the
fly via coarse-grained computation reuse,” in Proc. ACM Int. Conf.
Supercomput., 2019, pp. 438–448.

[60] L. Ning, H. Guan, and X. Shen, “Adaptive deep reuse: Accelerating CNN
training on the fly,” in Proc. IEEE 35th Int. Conf. Data Eng. (ICDE),
Macao, China, 2019, pp. 1538–1549.

[61] S. Yan, C. Li, Y. Zhang, and H. Zhou, “yaSpMV: Yet another SPMV
framework on GPUs,” Acm Sigplan Notices, vol. 49, no. 8, pp. 107–118,
2014.

[62] C. Holmes, D. Mawhirter, Y. He, F. Yan, and B. Wu, “GRNN: Low-
latency and scalable RNN inference on GPUs,” in Proc. 14th EuroSys
Conf., 2019, p. 41.

[63] Y. Hu et al., “Bitflow: Exploiting vector parallelism for binary neural
networks on CPU,” in Proc. IEEE Int. Parallel Distrib. Process. Symp.
(IPDPS), Vancouver, BC, Canada, 2018, pp. 244–253.

[64] F. Kjolstad, W. Ahrens, S. Kamil, and S. Amarasinghe, “Tensor
alge-bra compilation with workspaces,” in Proc. IEEE/ACM Int. Symp.
Code Gener. Optim., Washington, DC, USA, 2019, pp. 180–192.

[65] P. Roy, S. L. Song, S. Krishnamoorthy, A. Vishnu, D. Sengupta, and
X. Liu, “NUMA-Caffe: NUMA-aware deep learning neural networks,”
ACM Trans. Archit. Code Optim., vol. 15, no. 2, p. 24, 2018.

[66] D. Grubic, L. Tam, D. Alistarh, and C. Zhang, “Synchronous multi-
GPU training for deep learning with low-precision communications: An
empirical study,” in Proc. EDBT, 2018, pp. 145–156.

[67] R. Dathathri et al., “CHET: An optimizing compiler for fully-
homomorphic neural-network inferencing,” in Proc. 40th ACM
SIGPLAN Conf. Program. Lang. Design Implement., 2019, pp. 142–156.

[68] R. Istrate, A. C. I. Malossi, C. Bekas, and D. Nikolopoulos, “Incremental
training of deep convolutional neural networks,” 2018. [Online].
Available: arXiv:1803.10232.

[69] J. Kang, K. Chung, Y. Yi, and S. Ha, “NNsim: Fast performance esti-
mation based on sampled simulation of GPGPU kernels for neural
networks,” in Proc. 55th Annu. Design Autom. Conf., 2018, p. 176.

[70] J. Liu, X. He, W. Liu, and G. Tan, “Register-aware optimizations for
parallel sparse matrix–matrix multiplication,” Int. J. Parallel Program.,
vol. 47, no. 3, pp. 403–417, 2019.

Yun Liang (Senior Member, IEEE) received the
Ph.D. degree in computer science from the National
University of Singapore, Singapore, in 2010.

He is an Associate Professor (with tenure)
with the School of EECS, Peking University
(PKU), Beijing, China. He worked as a Research
Scientist with the University of Illinois at Urbana–
Champaign, Champaign, IL, USA, before he joins
PKU. His research focuses on heterogeneous com-
puting (GPUs, FPGAs, and ASICs) for emerging
applications, such as AI and big data, computer

architecture, compilation techniques, programming model and program anal-
ysis, and embedded system design.

Qingcheng Xiao received the B.S. degree from the
School of Electronics Engineering and Computer
Science, Peking University, Beijing, China, in
2016, and the Ph.D. degree from the Center
for Energy-Efficient Computing and Applications,
Peking University, in 2021.

He has built several automated tools, including
a co-design framework for agile co-design, a hard-
ware convolution library, and a hardware generator
for DNNs. His research interest is architecture and
software co-design for AI chips.

Liqiang Lu received the B.S. degree from the
Institute of Microelectronics, Peking University,
Beijing, China, in 2017, where he is currently
pursuing the Ph.D. degree with the School of
EECS.

His research focuses on algorithm-level and
architecture-level optimizations of FPGA for
machine learning applications.

Jiaming Xie received the B.S. degree from the
Institute of Microelectronics, Peking University,
Beijing, China, in 2018, where he is currently
pursuing the Ph.D. degree with the School of EECS.

His research focuses on GPU programming and
system-level optimization for FPGA cluster.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

