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Abstract—Deep convolutional neural networks (CNNs) have
achieved remarkable performance at the cost of huge compu-
tation. As the CNN models become more complex and deeper,
compressing CNNs to sparse by pruning the redundant connec-
tion in the networks has emerged as an attractive approach to
reduce the amount of computation and memory requirement. On
the other hand, FPGAs have been demonstrated to be an effective
hardware platform to accelerate CNN inference. However, most
existing FPGA accelerators focus on dense CNN models which
are inefficient when executing sparse models as most of the
arithmetic operations involve addition and multiplication with
zero operands.

In this work, we propose an accelerator with software-
hardware co-design for sparse CNNs on FPGAs. To efficiently
deal with the irregular connections in the sparse convolutional
layers, we propose a weight-oriented dataflow that exploits
element-matrix multiplication as the key operation. Each weight
is processed individually which yields low decoding overhead.
Then we design an FPGA accelerator that features a tile look-
up table (TLUT) and a channel multiplexer (CMUX). The tile
look-up table is designed to match the index between sparse
weights and input pixels. Using TLUT, the runtime decoding
overhead is mitigated by using an efficient indexing operation.
Moreover, we propose a weight layout to enable efficient on-chip
memory access without conflicts. To cooperate with the weight
layout, a channel multiplexer is inserted to locate the address.
Last, we build a Neural Architecture Search (NAS) engine that
leverages the reconfigurability of FPGAs to generate an efficient
CNN model and choose the optimal hardware design parame-
ters. Experiments demonstrate that our accelerator can achieve
223.4-309.0 GOP/s for the modern CNNs on Xilinx ZCU102,
which provides a 2.4X-12.9X speedup over previous dense CNN
accelerators on FPGAs. Our FPGA-aware NAS approach shows
2X speedup over MobileNetV2 with 1.5% accuracy loss.

Index Terms—FPGA, CNN, sparse, accelerator, NAS.

I. INTRODUCTION

Inspired by the biological nervous system, deep learning has
recently achieved remarkable accuracy improvement. Convo-
lutional neural networks (CNNs), the most commonly used
model in deep learning, have been adopted in various domains,
including image and speech recognition [1–4]. The signifi-
cant accuracy improvement of CNNs comes at the cost of
huge computational complexity as it requires a comprehensive
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assessment of all the regions across the feature maps. To-
wards such overwhelming computation pressure, FPGAs have
emerged as a promising solution due to their high performance,
energy-efficiency, and programability [5–8].

In a typical CNN model, each neuron is regarded as a
node in the network while the weight represents connections
between nodes in two adjacent layers. Pruning the connec-
tions in the deep neural networks has been proved as an
effective solution to compress the overall computation and
memory requirements of these models while maintaining high
accuracy. In general, compression techniques can be divided
into two categories: unstructured compression and structured
compression. The unstructured compression techniques prune
the weights with irregularity in a fine-grain manner of pixels
[9–11]. For example, Han et al. [9] have shown that there is
significant redundancy (up to 90%) for certain DNNs, which
can be pruned without sacrificing accuracy. The structured
compression aims at pruning the networks with a certain
shape in the weight [12–15]. However, the structured pruning
often leads to a lower compression rate as it shows a strict
mathematical formalization.

In this paper, we mainly focused on accelerating CNNs
with unstructured compression on FPGAs. Our approach can
also be applied to structure compression. Though pruning
techniques theoretically reduce the number of operations in
the convolution algorithm and potentially provide the oppor-
tunity for faster inference process, existing accelerators on
FPGAs for dense models are not suitable for sparse CNN
models. Most of these works optimize their dataflows based
on loop operations like loop interchange and loop unrolling
[16–20]. The dense accelerator can result in high hardware
inefficiency since most multiplication operations involve zero
operands [5, 6, 16, 21–25]. Implementation of sparse DNNs
has been studied in recent years on FPGAs[26]. These ac-
celerators mainly focus on the fully-connected (FC) layers,
which use matrix-vector multiplication operations and are used
for RNNs and LSTMs. However, the major operators of the
modern CNN’s computation are convolution operations. For
example, the convolution operations occupy 90% of the total
computation in GoogLeNet. Although the spatial convolution
can be mapped to matrix-vector multiplications, this will
increase the local memory requirement since the pixels in the
input feature maps have to be copied multiple times when
being flattened to a vector.

The challenges to design an efficient FPGA accelerator can
be summarized as follows,
• The convolutional layers involve complex connections be-
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Weight: N×M×R×S
Output feature maps: N×H×W

for h = 0 to H {
for w = 0 to W {

for n = 0 to N {
for m = 0 to M {

for r = 0 to R {
for s = 0 to S {

Output(n,i,j) += 
Weight(n, m, r, s) ×
Input(m, i*stride+r, j*stride+s);

}}}}}}

Fig. 1: A typical convolutional layer
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Fig. 2: Invalid computation caused by redundant connections in sparse CNNs

tween input feature maps and output feature maps for sparse
CNNs. Clearly, each output pixel is connected with part of
the input pixels through the sliding kernels. The connection
becomes irregular when the network becomes sparse. It is
difficult to design a dataflow to deal with the irregularity
but can leverage the high parallelism of FPGA and maintain
FPGA efficiency.

• The sparse weights are encoded in sparse format, which
requires extra coordinate computation to locate the weights.
However, the distribution of the sparse weights (non-zeros)
is irregular, which leads to inefficient memory access and
low on-chip bandwidth utilization.

• A CNN model generally consists of different types of
convolutional layers. Given a specific architecture design,
the performance can be different when the layer parameter
changes. Therefore, it is challenging to design a hardware-
friendly CNN model that can maximize the performance.
To address the first challenge, we propose a weight-oriented

dataflow where each PE performs element-matrix multiplica-
tion instead of spatial convolution. Here, the element refers to
the sparse weight and the matrix refers to the input tile. In
this dataflow, the sparse weights are processed separately. By
doing this, we successfully avoid the design issues related to
sparsity such as irregular connections and load imbalance, etc.
For the second challenge, we propose a weight layout, which
can enable efficient on-chip memory access of the weights.
In this layout, the weights processed in parallel are stored
continuously, and the results are accumulated from different
BRAM banks to avoid access conflicts. Moreover, we design
an efficient accelerator for sparse CNNs that features a tile
look-up table (TLUT) and a channel multiplexer (CMUX).
TLUT can reduce the overhead of runtime index matching
and CMUX helps to locate the output address easily when
updating the results. Finally, we build a Neural Architecture
Search (NAS) engine based on analytical models that are used
to predict the latency and resource utilization. For a specific
deep learning task, we use the engine to explore the design
space and identify the optimal CNN model architecture with
hardware design parameters.

A preliminary version of this paper was reported in [27]. In
[27], we propose an architecture design for accelerating sparse
CNNs on FPGAs. In this article, we extend previous work
with software-hardware co-design to further improvement the

performance. In particular, we propose a FPGA-aware NAS
framework to search for the optimal hardware design param-
eters and network architectures simultaneously. We perform
architecture search on ImageNet and draw comparisons with
several state-of-the-art hand-crafted and auto-designed models.

In conclusion, this work makes the following contributions,
• We propose a dataflow with element-matrix multiplication

as the key operation, where the element and the matrix refer
to the sparse weight and input tile, respectively.

• We propose an architecture design for the dataflow with a set
of optimization techniques. We use a look-up table to match
the sparse weight with the corresponding input pixels. We
also design the weight layout and compression format which
can enable efficient on-chip memory access.

• We develop an analytical model to estimate the latency.
This model considers different types of operators in modern
CNNs, e.g., point-wise convolution, depth-wise convolution.

• We develop a NAS engine to automatically generate CNN
model that can match our hardware design. This engine
searches both hardware design parameters and possible
CNN models under resource constraints, and outputs the
CNN model with high accuracy and low latency.
Experiments demonstrate that our accelerator can achieve

309.0, 223.4, 291.4 and 257.4 GOP/s for VGG, Alexnet,
Resnet-152 and GoogLeNet on Xilinx ZCU102, respectively.
Our accelerator achieves a 2.4X-12.9X speedup over the
previous dense CNN FPGA accelerators. Compared to TitanX
GPU platform, our accelerator shows 7.56X energy-efficiency.
Our FPGA-aware NAS approach shows 2X speedup over
MobileNetV2 with 1.5% accuracy loss.

II. BACKGROUND

A. Sparse CNN model

CNNs are a class of deep, feed-forward artificial neural
networks, which are composed of a series of layers including
convolutional layers, pooling layers and fully-connected layers
(FC layer). The convolutional layer is the most important layer
in which the kernels extract features from the input feature
map. Figure 1 shows the typical convolution operation. The
convolution operation uses a small R × S kernel to slide
through the input feature map. And the pixels inside the
sliding window conduct a multiply-and-add operation with the
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weights in the kernel to compute a pixel value in the H ×W
output feature map. There are usually many input feature maps
(aka input channels) and output feature maps (output channels)
in a single convolutional layer, and the numbers of input
feature maps and output feature maps are M and N as shown
in Figure 1, respectively. Note that the convolution results
in the different input channels are accumulated to obtain the
output channel results.

CNNs usually have a large number of weights, which could
introduce the problem of over-fitting. The weights pruning
techniques [9, 28] have been proven to be an effective method
to reduce the computation and memory size while maintaining
the overall model accuracy. For example, Deep Compression
[9, 28] can reduce the number of weights in AlexNet [29] and
VGG-16 [3] by 9X and 13X, respectively. These are known
as unstructured pruning techniques. There are other pruning
techniques that prune the weights with structured patterns
[15, 30, 31]. The advantage of structured pruning techniques
is they are hardware friendly. However, they often yield a low
compression rate due to the strict mathematical formalization.
The sparse CNN accelerators we propose can be used for both
structured and unstructured pruning techniques.

B. Neural architecture search

Neural architecture search (NAS) aims at automating NN
architecture design, in analogy to deep learning automat-
ing feature engineering. Generally, a NAS program consists
of search space, cost functions and search algorithm. First,
the search space generates a concrete NN architecture by
combining different types of convolutional layers. Then, the
NN architecture is evaluated by the cost functions which
consider the accuracy, the network size and the execution
latency on a target platform. As for the algorithm, the earliest
NAS algorithms train it from scratch on the whole dataset
using a controller recurrent neural network (RNN) [32, 33].
However, these approaches mainly focused on the model
accuracy without the consideration of the execution latency.
Besides, they are prohibitively computation-intensive and are
limited to small datasets and cell-level search spaces. Recently,
there are NAS works introducing the hardware latency in the
cost function [34–36]. However, these approaches only target
a fixed hardware architecture like GPU platforms and mobile
phones. And the search algorithm does not take the hardware
reconfigurability into account, which cannot be applied to
FPGA platform.

Different from previous NAS approaches, we take full
advantage of the flexibility of FPGA design where we in-
corporate hardware parameters into our neural architecture
search framework. More concretely, we build a resource model
to estimate the FPGA resource utilization with architectural
parameters and a latency model with both convolution pa-
rameters and architectural parameters. In this manner, FPGA
architecture design can be taken into account in the search
space. Section VI will provide the details of our hardware-
aware NAS approach.

TABLE I: Analysis of recent sparse CNN dataflow

dataflow type inner computation Decoding
overhead

SCNN[37] pixel-oriented Cartesian product high
CambriconX[38] kernel-oriented vector dot product medium

Cnvlutin[39] pixel-oriented vector multiplication
& reduction medium

SparTen[40] pixel-oriented vector dot product
with inner join high

Bit-Pragmatic[41] bit-oriented vector dot product
with shifters high

Ours weight-oriented element-matrix
multiplication low

III. FPGA DATAFLOW DESIGN

A. Dataflows for sparse CNNs on ASIC

There have been prior efforts on designing dataflows for
sparse CNNs on ASIC platforms. However, these dataflows
will be inefficient for FPGA platforms due to the distinct
architectures. In Table I, we classify prior ASIC designs based
on the inner computation of the dataflow. SCNN architecture
[37] applies the pixel-oriented dataflow where the innermost
computation is a Cartesian product. Using Cartesian product,
this dataflow multiplies input pixels with weights and returns
multiple partial sums. This method requires significant co-
ordinates computation to locate the sparse weights. Besides,
the partial sums are connected with different output pixels,
which bring great challenges for pipelining on FPGAs due
to complex data dependency. Cambricon-X [38] design ap-
plies direct and step indexing technique to select the input
pixels by detecting the nonzeros. Cambricon-X performs the
vector dot product across channels by gathering the weights
into a vector, which needs to dynamically select the input
vector. This dataflow only performs parallel computation in
channel dimensions, which also leads to poor parallelism on
FPGAs. Cvnlutin design [39] leverages the sparsity in the input
feature maps by using zero-skip computation. However, this
dataflow requires runtime control to identify the nonzeros in
the input pixels. Besides, the vector multiplication results are
dynamically reduced to the output via an adder tree, resulting
in high decoding overhead. SparTen [40] shares the similar
inner computation to Cvnlutin. The difference is that SparTen
applies an inner join scheme to gather the partial sums where
the nonzeros are represented using a bit-mask. since the input
sparsity depends on the results of the previous layer, such
bit-mask requires to dynamically encode the nonzeros into
bit-mask representation. Bit-Pragmatic [41] focuses on the
sparsity in bit level. Based-on the bit-serial unit of Stripes [42],
Bit-Pragmatic performs parallelized bit-serial multiplications,
and gathers the partial sums via a reduction tree. However, the
zero bit of input pixels cannot be determined off-line, which
increases the logical overhead to detect nonzero bits in the
input vector.

B. Dataflows for dense CNNs on FPGAs

There have been dense CNNs dataflows on FPGAs [6, 16,
21, 43, 44]. However, these dataflows will lead to invalid
multiplications caused by the redundant connections between
weights and input/ouput channels for sparse CNNs. As shown
in Figure 2, the invalid multiplications can be from spatial
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Sparse weight: SPw[M][N×R×S]
nonzero # in each input channel: NZ[M]

{LM}for m = 0 to M {
{LH}  for  h = 0 to H, h+=TH{
{LW}   for w = 0 to W, w+=TW{

get(in_tile, h, w, m); 
{LK}      for k = 0 to NZ(m), k+=TN{pipelined
do in parallel:
{LI}         for i = 0 to  TN {

weight∗ = SPw(m, k)
n = weight∗. n
out_tile = weight∗⨀in_tile

{LX}             for x = 0 to TH{
{LY}             for y = 0 to TW{

out n, h + x, w + y +=out_tile(x,y)
}}}}}}}

step ❶
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Fig. 3: Weight-oriented dataflow

kernel, input channel, and output channel dimensions, respec-
tively. The input feature maps share the same index with
the weight in the spatial kernel dimension and in the input
channel dimension. In other words, the input pixel whose index
matches the weight is needed when convolving the input with
the kernel. Besides, different kernels are connected to different
output feature maps, and the zero weight will not contribute
to the corresponding output feature map.

C. Our weight-oriented dataflow

We propose to transform the convolution computation to
element-matrix multiplication by processing each weight as a
single element. We compress the sparse weights into two ar-
rays: (1) SPw array, where the nonzero weights in the same
input channel are compressed into a vector. (2) NZ array,
which records the number of non-zero weights in each input
channel. One input channel is processed at a time. Figure 3 (a)
shows the pseudo code of our dataflow which consists of three
steps. In the step 1, we gather the necessary input pixels into
an input tile according the position (h,w,m). A TH×TW tile
in the output feature map is connected with TH × TW pixels
in the input feature map through a specific weight. Given a
specific kernel size and the sliding stride, a TH × TW tile
corresponds to a TH′ × TW ′ tile in the input feature map as
follows,

TH′ = R+stride×(TH−1), TW ′ = S+stride×(TW −1)
(1)

where the kernel size is R×S. Then, the input tile slides with
a vertical stride TH and a horizontal stride TW as shown in
Figure 3 (a). Step 2 is the inner computation of our dataflow
where TN weights are multiplied with the input tile in parallel.

Figure 3 (b) presents the details of the inner computation
in the weight-oriented dataflow. Based on the position of the
weight, we select a tile of input pixels that are connected
with the weight. More clearly, given an output tile, each
weight corresponds to a certain sub-input tile determined by
the position of the weight in the kernel. For example, the value
’1’ in the top-left corner of the sparse weight multiplies with
all the 4× 4 top-left tiles of input feature maps. The weights
are from different output channels. Finally, the multiplication

results will be accumulated the output pixels according to the
index (n, h,w) in Step 3.

Our dataflow and its element-matrix multiplication inner
computation has the following advantages. First, our dataflow
processes the sparse weights one by one separately. By doing
this, we can effectively exploit the sparsity and meanwhile
reduce the sparsity decoding overhead. Second, our dataflow
provides sufficient parallelism on FPGAs. More clearly, the
output pixels in the spatial kernel and output channel dimen-
sions are computed in parallel. Third, our dataflow has low
data dependency overhead. The results from Step 2 in Figure
3 are accumulated to different output pixels which have no
read-and-write conflicts.

IV. ARCHITECTURE OPTIMIZATION

In Section III, we transform the convolution operation to
element-matrix multiplication. However, implementing this
dataflow on FPGA arises two challenges. The first challenge
is to select the necessary pixels for a specific weight. A single
weight is connected to only part of the pixels in the input
feature maps, and the weight in the different position of the
kernel is connected to different input pixels, as shown in step
1 of Figure 3. Second, to ensure multiple results can be accu-
mulated to the output buffer in parallel in step 2, a dedicated
data layout is required under the hardware constraints of FPGA
memory structure (e.g., dual-port BRAM). Furthermore, the
PEs should be pipelined to increase the throughput.

A. Architecture overview

As shown in Figure 4, The input buffer contains four rows of
feature maps. The output buffer size is set to store all pixels
in one row of feature maps. our FPGA accelerator consists
of TN PEs with each PE has TH × TW multipliers. Each
PE is connected with a tile look-up table (TLUT) to match
the weight and the required input pixels (Section IV-B). In
Section IV-C, we propose a novel weight layout where the
parallel weights are stored continuously. Besides, the layout
can ensure the results from the PE array are accumulated
to different output banks without data access conflicts in the
pipeline. To cooperate with the layout, in Section IV-E, we
propose a channel multiplexer (CMUX) to locate the channel
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address. The channel multiplexer receives the weight index in
the sparse format and outputs which bank the results should
be accumulated to. Since the weight distribution across output
channels might be unbalanced, we analyze the load balancing
problem in Section IV-F.

B. TLUT module

As aforementioned, the weights represent the connections
between the input feature map and the output feature map.
However, when the weight is sparse, the connection loses
its structured topology. To bridge the gap between irregular
connections to input pixels and the regular PE array, we insert
a tile look-up table between the input tile and PEs. Figure 5
depicts how the weight and the input pixels are paired. When
the kernel is sliding in the input tile, the weight in a R × S
kernel is connected to a set of input pixels in the input tile.
These pixels are batched together into a new tile. For example,
in Figure 2, the position of the weight with value ’1’ is (0, 0)
which corresponds the top-left tile, and we can directly fetch
the pixels from the TLUT module which has been pre-fetched
when the start point (h,w,m) is determined.

There are R × S sub-tiles in total with R × S positions
in the kernel. These tiles are stored in local registers in the
TLUT module. As the PE array processes multiple weights
in parallel, each PE has its own TLUT module. As shown
in Figure 4, the input tile is reused by duplicating the pixel
into multiple TLUT modules. And the weight is reused by
multiple pixels in the input tile. The TLUT module replaces
runtime index matching with a simple array indexing operation
by introducing additional local registers. This helps to save the
logic resources significantly since the runtime index matching
requires a large number of multiplexers.
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Fig. 6: Weight layout in the output channel dimension. II is the loop
iteration interval of pipeline.

C. PE design and weight layout

The PE receives the decoded weight and the selected tile
from the tile look-up table. We initiate a PE array with each
PE conducting an element-matrix multiplication operation.
In the step 2 of our dataflow, we compute multiple output
pixels from different output channels in parallel. There are
TN homogeneous PEs process multiple weights and input
tiles in parallel. Furthermore, we apply pipelining technique
to our PE design. Pipelining allows multiple operations in
step 2 to process concurrently to increase throughput, and
the pipeling efficiency is determined by the iteration interval
(II). According to Figure 3, the iteration interval is bounded
by the weight access bandwidth and output access bandwidth.

To enable simultaneous update of multiple output channels,
the output buffer is partitioned to TN×TH×TW banks where
each bank i in the channel dimension stores the weights from
the n = (TN × x + i) output channel as shown in Figure 8.
Traditionally, the weights are sorted in the ascending order of
channels. If more than one weight need to be read from the
same bank, this will lead to a long read latency. To address
this problem, we rearrange the weight layout according to
its remainder Re by dividing the output channel n with TN
(Re = n mod TN ), as shown in Figure 6, so that the results
from the PE array are accumulated to the output buffers. For
example, in Figure 6, 4 weights are processed in parallel. In
our weight layout, the results from the PE array need to be
accumulated to the output channel (0, 5, 2, 7) in iteration i+1,
whose remainder are (0, 1, 2, 3). In this manner, multiple write
operations refer to different banks, resulting in an improved
iteration interval.

D. Sparse Format

To cooperate with the weight layout, we propose an in-
terleaved output channel coordinate list (IOCOO) format
to store the sparse weights. More clearly, weights in one
input channel is stored in a vector. Each element is 5-tuple
(n, r, s, value, valid) which represents the indices and the
value of the weight. These tuples are stored with different
bit width as follows. Using this format, the compressed weight
can be directly sent to PEs without decoding overhead, leading
to a high PE bandwidth utilization.

tuples r s n valid value
bit width 4 4 10 1 16
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Figure 7 shows the compression rate of a few well-known
formats such as CSR, CSC, COO, and recently proposed
formats including C2SR of MatRaptor [45] and CISS of
Tensaurus [46]. For CSR, CSC, C2SR formats, we flatten the
weight into a (1024× 3× 3)× 1024 matrix. The compression
rate is given by

compression rate =
the compressed data size

dense data size

In Figure 7, CSR has a lower compression rate because
of the matrix shape. COO format shows a higher memory
requirement as indices are stored individually. The compres-
sion rate of our approach is similar to CSC because of the
same number of pointers. In CISS format, extra information is
required to store pointers of higher dimensions as the weight is
a 4D-tensor. C2SR shares a similar idea to our design where
each row is assigned a fixed channel in a cyclic manner to
avoid memory conflict. Though our format requires a little
higher memory, less logic resource is needed for decoding.
For example, using CSR format, the spatial coordinate of the
weight needs to be calculated according to the row pointer.

We also analyze the available bandwidth of different for-
mats, as shown in Figure 7. The bandwidth is calculated with
the assumption that the PE number is 8, and the frequency is
1GHz. Traditional formats, like CSR, CSC and COO, only
have a single entry for compressed weights resulting low
bandwidth. The bandwidth of CISS and IOCOO is similar
since both of these two formats partition the weight according
to the PE numbers. C2SR has higher bandwidth. This is
because each PE in MatRaptor[45] is responsible for multiple
weights in one iteration. To enable enough bandwidth, C2SR
partitions the weight matrix into more pieces leading to higher
bandwidth.

0 1 2 3 0 1 2 3 0 1 2 3 4 5 6 74 5T୒ = 4

: valid weight : invalid weight

T୒ = 6 T୒ = 8

remainder

Fig. 9: Unnecessary computation under proposed weight layout

E. CMUX module

In the PE array, each PE generates a tile of results that
belong to a distinct output channel. The address that the results
need to be accumulated to is determined by the index in
the format. A channel multiplexer is inserted between the PE
array and the output buffer to locate the address as shown in
Figure 8. The channel multiplexer consists of TN input wires
which represent the number of banks in the output channel
dimension. The CMUX module will first compute the output
address according to the remainder, e.g., the 1st input wire
means its remainder is 1. And then the channel multiplexer
will output which bank the results need to be accumulated.

F. Load balancing analysis

In our architecture, PEs strictly process TN weights with
different remainders together. However, the weights with dif-
ferent remainders cannot be evenly distributed. So we align
the weights with unnecessary data among all the remainders
so that the number of weights across different remainders is
equal. There is a valid signal in IOCOO format to indicate
whether the weight is valid. As a result, the latency is always
bounded by the remainder with the maximum nonzeros. The
computation efficiency can be computed as follows,

Computeeff =
# of valid

# of valid+# of unnecessary
(2)

In the example of Figure 9, the parallelism factor TN is set
to 4, 6, 8 with a fixed number of nonzeros 28. For example,
when TN = 8, the computation efficiency is 28

28+12 = 70%.
In the experimental section, we will analyze the computation
efficiency using real networks.

V. IMPLEMENTATION DETAILS

A. Memory system

The on-chip memory of FPGAs is not large enough to hold
all the channels of feature maps. Besides, there exist data reuse
opportunities both horizontally and vertically since there is
overlapping when the kernel slides across the input feature
maps. Line buffer design is widely used in previous acceler-
ators and can effectively reuse the input data [6, 21, 24, 47].
Hence, we apply line buffer design to load and calculate
feature maps. We implement line buffer design using loop
tiling techniques where the required data in tiled loops are
stored in the on-chip BRAM. Different tiling strategies can
lead to different data reuse opportunities. In our design, we
choose to tile the loop in the channel dimension with factor
KM and KN , as shown in Figure 3 (a). Because when the
kernel sliding across feature maps, the relationship between
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the data of different channels is irrelevant or independent.
Assuming the sliding stride of convolution kernel is one, each
input line buffer contains KM ×W elements, and each output
line buffer contains KN ×W elements. To sustain sufficient
on-chip bandwidth for PE computation, we partition each
buffer according to the parallelization degrees. For example,
each output line buffer is partitioned with factor TW in width
dimension and factor TN in channel dimension.

The modules in the PE are also pipelined to increase
throughput. Clearly, there are two input tiles working in a ping-
pong manner to overlap the latency of the tile look-up table
and the latency of the PE array. The latency of generating the
tile look-up table can be regarded as a constant. The latency
of the PE array depends on the loop count of LK and the
pipeline depth, as shown in Figure 3. In general, the latency
of loop LK is much larger than the latency of the tile look-up
table, therefore our PE design can achieve high efficiency.

B. Implementation of other layers

In general, the modern CNN networks contain different
kernel sizes. For example, Resnet has 1× 1 and 3× 3 kernels
in the residual block, and GoogLeNet has 1 × 1, 3 × 3 and
5 × 5 kernels in the inception module. Since each weight is
processed independently in our dataflow, our architecture can
flexibly handle different kernel sizes. To unify the structure
of the tile look-up table, we transform all the kernels to the
3 × 3 kernel. Figure 10 shows an example that transforms
the 5 × 5 kernel to the 3 × 3 kernel. The 5 × 5 kernel is
padded to 6 × 6 kernel with zeros then split into four 3 × 3
kernels. Apart from the convolutional layers, there are other
layers in CNN models. In our architecture, we implement two
widely-used layers: pooling layer and Rectified Linear Unit
(ReLU) layer. Pooling layer outputs the maximum values in
sub-regions of input feature maps. ReLU layer sets any input
value less than zero to zero. These two layers are implemented
by introducing comparison operators when writing the results
to off-chip memory.

To accelerate an end-to-end CNN model, our design also
supports Rectified Linear Unit (ReLU) layer, Pooling Layer
and fully-connected (FC) layer. FC layers connect all the
neurons in the previous layer to every single neuron in the
weight matrix. We treat FC layer as a convolution layer with
1 × 1 kernel. Max Pooling layers are widely used in CNNs,
which output the maximum values in subregions of input
feature maps. ReLU layers set any input value less than zero
to zero. As shown in Figure 4, pooling and ReLU logic are set
before storing the output line buffer to the off-chip memory.
ReLU is a pixel-wise operation, which is implemented by

TABLE II: Hardware design parameters

Parameters Description
Memory design parameters

T_H Tiling factor of output image height
K_M Tiling factor of input channel
K_N Tiling factor of output channel

Computation design parameters
T_H Parallelization factor of output image height
T_W Parallelization factor of output image width
T_N Parallelization factor of output channel

introducing comparison operators for each pixel. Pooling layer
is implemented by gating the non-maximum value in the
pooling region when storing the output pixels.

VI. FPGA-AWARE NAS

In previous sections, we provide an efficient architecture
design for sparse CNN acceleration. Our hardware implemen-
tation involves several design parameters as shown in Table II.
These parameters will affect both FPGA resource utilization
and performance. More importantly, the execution latency of
a CNN model is determined by both hardware parameters and
convolution parameters, which makes it hard to find the opti-
mal hardware design and an FPGA-friendly CNN model. Here,
we propose a NAS framework that searches both architecture
parameters and CNN model parameters. Specifically, we first
formulate a resource model as the search constraint, and a
latency model that is incorporated into the loss function. Then,
we perform architecture search on a sparse supernet, which
minimizes the total latency meanwhile maintains the accuracy.

A. Resource model

We use the number of memory banks to estimate the BRAM
usage which is mainly used for input buffer, output buffer and
encoded weight buffer. In our design, the PE array generates
multiple TH×TW output tiles in TN different output channels.
Considering double buffer design, the number of output buffer
banks is 2TH ×TW ×TN . In line buffer design, the input line
buffers are rotated to reuse the overlapped area during the
kernel sliding. According to equation 1, the number of input
buffer banks is (TH + TH′) × TW ′ . As for the compressed
weight in IOCOO format, the five tuples are represented with
different bitwidth. The value and output channel number are
stored individually. While the rest tuples are packed together
and stored as a 9-bits element. Each part is partitioned with
factor TN . Therefore, the bank number of sparse weight is
3×TN . In summary, the total number of banks can be written
as follows.

Banks1 = 2TH×TW×TN+(TH+TH′)×TW ′+3×TN (3)

Most DSP resource is consumed to perform multiplications
between the input element and the sparse weight. Here, we
assume a single DSP can be implemented as one multiplier2.

1In Xilinx FPGA, one BRAM can store 1024 words of 18bits. The required
BRAMs is determined by the data size in one bank.

2In most Xilinx FPGA Platform, a single DSP(DSP48E1) slice can be
implemented as one 18 × 25 fixed-point multiplier. In most Intel FPGA
Platform, a single DSP slice can be implemented as two 18× 18 fixed-point
multipliers
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In CMUX module, each output tile needs to locate the output
channel number, which takes 3 DSPs to calculate the address
(3 comes from Vivado HLS). In this manner, the DSP utiliza-
tion can be estimated as follows.

DSPs = TH × TW × TN + 3× TN (4)

Modeling the LUT consumption on FPGA is more complex.
For simplicity, we only model the LUT consumption for TLUT
modules and CMUX modules. In our dataflow, there are TN
tile look-up tables working in parallel. The LUT consumption
depends on the input tile size TH×TW . Besides, there are TN
CMUX modules, which is a crossbar with TN input wires. In
summary, the LUT consumption is formulated as

LUTs = TN × (αlog(TH × TW ) + βlog(TN )) (5)

where αlog(TH × TW ) is the LUT consumption to store a
single input tile, and βlog(TN ) is the LUT consumption for
one CMUX module. α and β can be obtained on different
platforms in advance. We first get the LUT consumption for a
set of (TH , TW ) based on Vivado High level Synthesis Tool.
Then, we get α and β based on linear regression.

B. Latency model

The overall latency is either bounded by the PE computation
time or the data transfer time in the line buffer design. First,
we model the latency of loading/storing TH rows of feature
maps to/from the line buffer. Assuming each data is stored in
16 bits fixed point and the kernel sliding stride is 1, the data
transfer time can be formulated as follows.

Ttra =
TH ×W ×max(KM ,KN )× 16bits

Bandwidth
(6)

where KM , KN are tiling factors in the channel dimension
in Table II.

To simplify the estimation of the computation time, we
use effave to represent the average computation efficiency
as discussed in Section IV-F. We define the computation time
as the time to generate TH ×KN output elements.

Tcom = (
sparsity

effave
×dKN

TN
e×KM×d

Wout

TW
e×II+Pdepth)×

1

Freq
(7)

where Freq is the operating frequency of the FPGAs. II
denotes the iteration interval of the pipeline. In our implemen-
tation, the loop LK in Figure 3 (a) are perfectly pipelined, so
the II = 1. Pdepth is the pipeline depth, which can be ignored
when the loop trip count is large enough.

Involving sparsity can result in low computation latency.
Therefore, we also consider the initial time to load the first
TH′ rows of input feature map and the sparse weight.

Tinit =
KM ×KN × TH′ + 3×R× S ×KM ×KN × sparsity

Bandwidth/16bits
(8)

Putting it all together, the total latency is determined by
the initial time and maximum between data transfer time and
computation time.

Ttotal = d
M

KM
e×d N

KN
e×(d H

TH
e×max(Ttra, Tcom)+Tinit) (9)
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Fig. 11: FPGA-aware neural architecture search flow

TABLE III: Configurations of candidate operations.

Operation Type Expansion Ratio Kernel Size
3×3_MBConv3 3 3
3×3_MBConv6 6 3
5×5_MBConv3 3 5
5×5_MBConv6 6 5
7×7_MBConv3 3 7
7×7_MBConv6 6 7

skip layer - -

C. Search algorithm

Our NAS algorithm models the FPGA architecture. As
aforementioned, our architecture is parameterized with par-
allelization factor TH , TW , TN and buffering factor KM ,KN ,
which affect the resource utilization and execution latency.
Therefore, our problem setting specifies each layer o with
three groups of parameters, including model weights w, and
architecture parameters p and hardware design parameters h.
More specifically, when deriving child networks from the
supernet, each layer is sampled from a multinomial distribution
parameterized by p over a pre-defined candidate set {oj}. The
hardware design parameters are also taken into account in
two folds. First, the resource model ensures that the resource
requirement of the search result can be met for a given FPGA
device. Second, the latency model is integrated into the loss
function for software-hardware co-design.

We use the same search space and supernet architecture as
shown in Table III and Table IV. We adopt mobilenet inverted
residual block as the basic building block of the supernet,
whose kernel size can be chosen from {3, 5, 7} and expansion
ratio from {3, 6}. Furthermore, to permit flexibility in network
depth, a special skip layer is added to the candidate set if the
input and output of a layer are of the same size.

Figure 11 shows our search algorithm which comprises
three stages, i.e. warm-up, searching and retraining. In the
warm-up stage, we adopt ADMM pruning to obtain a sparse
supernet [10]. The supernet is trained normally for several
epochs before we introduce the ADMM regularizer to promote
sparsity. After convergence, we zero out the least significant
connections according to the magnitude. A binary mask is
then applied over each pruned parameter to prevent back-
propagation from tampering with the weights of removed con-
nections. In the second stage, we perform neural architecture
search over the sparse supernet. Our loss function integrates
the above-mentioned resource constraints and latency model,
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TABLE IV: Supernet specification. Here MixOp denotes the
mixed operation which can be chosen from 7 candidate operations,
3×3_Conv denotes a normal 3×3 convolution, and 3×3_MBConv1
represents a 3×3 mobilenet inverted residual block of expansion ratio
1.

Input Size Operator Output s n
224×224x3 3×3_Conv 32 2 1

112×112×32 3×3_MBConv1 16 1 1
112×112×16 MixOp 24 2 4
56×56×24 MixOp 40 2 4
28×28×40 MixOp 80 2 4
14×14×80 MixOp 96 1 4
14×14×96 MixOp 192 2 4
7×7×192 MixOp 320 1 1
7×7×320 GAP - - 1

320 FC 1000 - 1

which is given by

minimize
{wi},{pi},{hi}

LossCE +λE[latency]

subject to LUTs(hi) ≤ LUTmax,

DSPs(hi) ≤ DSPmax,

hi ∈ H, i = 1, . . . , N,

(10)

where λ is a scaling factor, LossCE is the accuracy loss,
LUTmax and DSPmax denoting respectively the limitation
of LUT and DSP resources. The weight decay term is omitted
here for simplicity. The second term of the loss function stands
for the expected latency of the whole network, which can be
calculated as follows:

E[latency] =
∑
i

∑
j

pji × Ttotal(o
j
i , hi) (11)

Here oji and pji are the j-th candidate in the i-th layer and
its assigned possibility. The estimated latency Ttotal is derived
by assigning a specific candidate and hardware configuration
as shown in equation 9.

To simplify the problem, we optimize hardware parameter
h in a separate subproblem:

minimize
h

Ttotal(o, h)

subject to LUTs(h) ≤ LUTmax,

DSPs(h) ≤ DSPmax,

h ∈ H,

(12)

Since the search space H is a finite discrete in our case, a
simple parameter sweep will find the globally optimal solution
h∗. In our case, the latency overhead of exhaustive search
is negligible compared to neural network training. Then the
original loss function can be rewritten as

minimize
{wi},{pi}

LossCE +λ
∑
i

∑
j

pji × T
∗
total(o

j
i ) (13)

where T ∗total(o
j
i ) is a shorthand for Ttotal(o

j
i , h
∗
i ).

In this manner, the simplified objective resembles a regular
hardware-aware NAS problem that does not involve hardware
parameters, we can solve the remaining part according to the
technique in [35]. After the search algorithm has sufficiently
converged, we obtain the optimal subnetwork by only keep-
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Fig. 12: Automatic hardware generation for ASIC and FPGA.

ing the most promising candidate at each layer. Since we
have pruned the supernet in the warm-up stage, the compact
network retains its sparsity. At last, the best architecture is
retrained from scratch for the final evaluation.

Note that our framework is able to support more complex
cases where H can be a large discrete space or even a
continuous one, and where a more sophisticated performance
model is adopted. For example, given a learned performance
model Ttotal parameterized by θ, we could back-propagate
gradients through it and optimize hardware parameters h with
gradient descent by fixing θ.

D. Automatic Hardware Generation

In this section, we integrated our architecture design with
our NAS engine into an automatic flow for hardware gener-
ation. The intermediate passes are summarized in Figure 12.
The inputs consist of a specific task and budget constraints. For
ASIC design, the budget involves energy and area constraints
under certain technology. For FPGAs, the budget is the on-chip
resources. Then, our flow explores the space of the hardware-
software co-design using the proposed NAS engine. The co-
design information includes the target execution latency and
the accuracy of a specific task. The co-design tuner helps to
find the optimal architecture parameters and model parameters
in the search space. Last, our automatic flow generates a
CNN model and hardware implementation written in high-
level template. The template can be synthesized using Xilinx
Vivado HLS to get the FPGA bitstream, or using Mentor
Catapult HLS tool [50] to generate Verilog RTL.

VII. EXPERIMENT

In this section, we first introduce the experiments setting.
In Section VII-B, we show the performance of our accelerator
for the state-of-the-art CNNs and compare it with previous
dense CNN FPGA accelerators. Then, we measure the re-
source utilization and analyze the utilization breakdown. In
Section VII-D, we examine the hardware efficiency of different
configurations using four state-of-the-art networks. Last, we
evaluate our NAS approach on FPGAs and compare to other
NAS work.

A. Experiments Setup

We evaluate our design on Xilinx ZCU102 platform.
ZCU102 consists of an UltraScale FPGA, quad ARM Cortex-
A53 processors, 500 MB DDR3. Our FPGA implementation
is operated at 200MHz frequency on this platform. To measure
the runtime power, we plugged in a power meter in the
FPGA platform. In this work, we first use Xilinx Vivado HLS
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TABLE V: Performance comparison with previous implementation

[21] [16] [48] [49] [43] Ours Ours Ours Ours
CNN type VGG VGG VGG VGG Alexnet VGG Alexnet Resnet-152 GoogLeNet

Device Arria-10
GX1150

Arria-10
GX1150

Xilinx
Virtex-7 Zynq ZC706 Zynq

ZC706
Zynq

ZCU102
Zynq

ZCU102
Zynq

ZCU102
Zynq

ZCU102
Frequency (MHz) 150 370 200 100 - 200 200 200 200

Precision 16bit fixed 32bit float 16bit fixed - - 16bit fixed 16bit fixed 16bit fixed 16bit fixed
DSP Utilization 1518 (100%) 1320 (87%) 3200 (89%) - - 1144 (45%) 1144 (45%) 1144 (45%) 1144 (45%)
Logic Utilization 161K (38%) 182K (43%) 237K (55%) - - 552K (92%) 552K (92%) 552K (92%) 552K (92%)

BRAM 1900 (70%) 1250 (46%) 1244 (85%) - - 912 (48%) 912 (48%) 912 (48%) 912 (48%)
Performance (GOP/s) 64.5 (eff.)1 128.5 (eff.) 281.62 297 71.2 309.0 223.4 291.4 257.4

DSP efficiency
(GOP/s/DSP)

0.042 0.097 0.088 - - 0.27 0.19 0.25 0.23

Logic efficiency
(GOP/s/logic(K))

0.40 0.71 1.12 - - 0.56 0.41 0.53 0.47

Power (W) 45.0 41.7 - 9.6 9.6 23.6 23.6 23.6 23.6
1 eff. is the effective performance on sparse networks.
2 281.6 is estimated according to the number of frame per second in the paper.

TABLE VI: Training configurations.

Stage Epoch LR Sched bs

warmup
pretrain 40 0.05 cosine 256
prune 60 0.01 step 256
retrain 30 0.01 cosine 256

search 60 0.025 cosine 256
retrain 180 0.05 cosine 256

(v2017.4) tool chain to transform C code into RTL implemen-
tation. Then, we employ Xilinx SDSoC (v2017.4) to compile
the source code into bitstream. We apply [9, 28] methods to
train the CNN model with sparsity using the Caffe framework
[51]. Specifically, we set the expected sparsity of the network
by setting the value that is less than a threshold to zero,
followed by retraining the network to regain any lost accuracy.
In our experiment, we use the state-of-the-art CNNs including
Alexnet, VGG-16, Resnet-152 and GoogLeNet. We achieve
10.8%, 11.7%, 23.5%, 34.2% sparsity3 of Alexnet, VGG-16,
Resnet-152, GoogLeNet without accuracy loss, respectively.

We perform neural architecture search on the full ImageNet.
The validation set contains 50000 images randomly sampled
from the original training set. As for ADMM pruning, we
set rho4 to 1e-3, 1e-2 and 1e-1 respectively in multi-rho
training. Both the ADMM pruning and the NAS framework
are implemented in PyTorch[52]. We use λ = 0.1 in our
experiments, and summarize other training configurations in
Table VI. Note that we spend more GPU hours (130 epochs
vs 40) in the warm-up stage because of pruning. All training
stages are run on 4 NVIDIA V100 GPUs.

B. Performance Analysis

In this section, we show the performance of our accelerator
using modern CNNs. We set the accelerator configuration as
< TH , TW , TN >=< 8, 8, 16 >, which involves 1024 mul-
tipliers. In this configuration, the peak available performance
can be computed as

peak performance = # of multipliers× frequency × 2

Here 2 means multiplication and addition operations. The peak
performance of our design is 409.6 GOP/s.

3Sparsity is defined as the percentage of nonzeros.
4Rho is the scale factor of the penalty term in ADMM pruning

We also compare our design with previous FPGA acceler-
ators in Table V. [16, 21] are dense CNN accelerators and
[43, 48, 49] are sparse CNN accelerators. The performance
in Table V represents the effective performance. For the
dense CNN accelerators, the effective performance is com-
puted by multiplying the performance of dense CNNs with
sparsity. According to Table V, our implementation achieves
223.4 GOP/s effective performance on sparse Alexnet which
shows 2.4X speedup compared with [43]5. [49] shows similar
performance to our design, but it applies low bit precision
which requires less resources. The performance on VGG
network is 309.0 GOP/s which is 3.6X-4.8X higher than
[16, 21]. [48] shows higher performance because they pruned
the network in the frequency domain which results in element-
wise multiplication pattern. This computation pattern shows
less complexity compared with the convolution operator. For
Resnet-152 and GoogLeNet, our design achieves 291.4 GOP/s
and 257.4 GOP/s, respectively.

To make a fair comparison across different platforms, we
also present the DSP-efficiency and logic-efficiency on each
platform. On average, our design exhibits 0.24 GOP/s/DSP
DSP-efficiency, which shows 2.5X-5.7X improvement com-
pared with prior works [16, 21, 48]. On the other hand, our
design shows lower logic-efficiency. This mainly comes from
the TLUT module and CMUX module for the data decoding.
Most previous designs target dense CNNs that exhibit regular
data access. Therefore, they have higher logic-efficiency.

The speedup of our design is because the weight-oriented
dataflow can effectively eliminate the useless multiplications.
In addition, the dataflow maintains a high utilization of on-
chip resources. Previous implementations cannot efficiently
exploit the zeros in the computation, which results in a waste
of on-chip resources. On the other hand, previous dense CNN
accelerators are highly optimized and DSPs are fully utilized
to conduct multiplications. In our implementation, only half
of DSPs are utilized, and the performance is bounded by the
logic resource.

The inefficiency of our implementation mainly comes from
three aspects. First, there exist some invalid weights in our
weight layout, which leads to imbalanced workload among
PEs. Section VII-D presents the details of load imbalance
problem. Second, the feature map size in the CNN layers

5This paper [43] only reported the performance and the platform
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Fig. 13: Computation efficiency

TABLE VII: Resource utilization and latency.

BRAM DSP6 FF LUT
Buffers 609 0 0 0
TLUT 0 0 48894 59150
PEs 0 288 1088 32

CMUX 0 24 394 43976
Others 8 52 18408 12758
Total 617 364 68784 132344

Predict(error) 556(9.9%) 312(14.3%) - 103158(9.6%)
Available 1824 2520 548160 274780

Actual latency 191011 cycles
Predicted latency 182523 cycles (4.4% error)

cannot divide TH and TW evenly. We choose 8 × 8 as the
output tile size. Take the last convolutional layer of VGG as
an example, the feature map size is 14×14 leading to a 12.5%
waste of computation. Third, as mentioned in Section IV-C,
we apply pipeline technique in PEs. When the workload is
small after pruning, the latency of PE can be bounded by the
depth of pipeline. In our implementation, the pipeline depth
is 8 cycles. Compared with VGG network, Resnet-152s and
GoogLeNet consist of many convolutional layers with 1 × 1
kernels, leading to low performance. The speedup of VGG-16
is higher than that of Alexnet, because VGG-16 is a structured
and regular network. The kernel size of all layers is 3 × 3,
however, Alexnet contains many layers in different types.

C. Resource Utilization Characteristics

Table VII shows the resource utilization breakdown with
the configuration (TH = TW = 6, TN = 8). In Table VII,
we also present the prediction accuracy of our resource model
and latency model. The cycle number of latency is tested on
the convolutional layer with 112 × 112 feature map size and
64 × 64 × 3 × 3 kernel size. The inaccuracy sources of DSP
utilization mainly come from the padding operation and FIFOs
in the line buffer design. A few extra BRAMs are used for
FIFOs and pipeline buffers. The actual latency is obtained
using Xilinx HLS simulation tools. The prediction error of
latency model results from the padding operation, which only
occupied a few cycles.

Figure 14 shows the resource utilization of different config-
urations obtained from Xilinx Vivado tool (v2017.4). In Figure
14, the LUT utilization increases as the parallelism factor TN
increases because of CMUX. When TN is large, the utilization
of BRAMs is mainly determined by the parallelization degree
of feature maps (TH , TW ). When TN is small, BRAM utiliza-
tion is similar. This indicates that the consumption of BRAM
is determined by the input and output data size, instead of the
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partition factors. For example, when TN = 4 in Equation 3,
each bank is constructed using two BRAMs. While each bank
only needs one BRAM when TN = 8.

D. Computation efficiency

In our implementation, the PE array processes PN weights
with different remainders at the same time. However, the
remainder distribution is irregular which can result in load
imbalance problem as discussed in Section IV-F. Figure 13
shows the efficiency across different layers with different
parallelism factors. We find that the format efficiency increases
when the modular factor TN becomes larger. Because a large
TN will bridge the gap between the maximum number of
valid values and the average number of valid values among
different remainders. We find that the efficiency increases as
the network goes deeper. This because the number of channels
increases as the network goes deeper, which makes the total
number of nonzeros larger. A large number of nonzeros can
compensate for the gap between the maximal and minimal
number of remainders. Also, we observe that the computation
efficiency of GoogLeNet and Resnet-152 is much higher. This
is because the sparsity of these two networks is relatively
large which leads to a large number of nonzeros. Besides,
the computation efficiency of some layers in GoogLeNet is
low. Because the channel number cannot be divided evenly by
TN . For example, the output channel number of inception_4b
layer in GoogLeNet is 24 which is not a multiple of TN = 16.
In conclusion, our dataflow can maintain high computation
efficiency for different configurations and networks.
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E. Comparison with ASIC dataflows

In this section, we build several cycle-accurate models
for the comparison with ASIC sparse tensor accelerators.
Cambricon-X [38] and SCNN [37] are CNN-specific ASIC
accelerators. We only model the behavior of the PE array of
these designs. To make a fair comparison, we scale the number
of multipliers to 1024. Tensaurus [46] and ExTensor [53] are
general sparse tensor accelerators. MatRaptor [45] focuses
on the sparse matrix-matrix multiplication (GEMM). When
comparing with them, we transform the convolutional layer to
GEMM using the image-to-column (im2col) operation. The
input image is regarded as a dense matrix.

Figure 15 gives the comparison results. We also draw the
line of theoretical speed up calculated by (1/sparsity). When
the sparsity is higher than 70%, Cambricon-X and our design
show near-ideal speedup. However, SCNN shows a lower
speedup because of a large amount of fanout of the PE array
when most weights are non-zero. On the other hand, our design
outperforms Cambricon-X when the sparsity decreases. This
is because Cambricon-X requires index comparison to conduct
sparse vector dot-product which is inefficient for low sparsity.
Our weight-oriented dataflow minimizes the indexing overhead
by introducing a static TLUT module.

The speedup of general sparse tensor accelerators is always
lower than the CNN-specific accelerators. Such limitation
mainly comes from the im2col operation where the input
images are duplicated multiple times and flattened into a
matrix. On the other hand, CNN accelerators naturally leverage
the convolution properties to avoid data rearrange overhead.
To be specific, Tensaurus unifies the sparse computation as an
operation between a scalar and a fiber, where each PE performs
the multiplication between one weight and one input vector.
MatRaptor applies the row-wise matrix multiplication dataflow
where one weight is multiplied with the corresponding row
of the input matrix. Though these two dataflows share a
similar idea to our design that each PE is responsible for
the multiplication between one weight and multiple inputs,
their speedup is limited by the sparsity. PEs in Tensaurus
and MatRaptor is parallelized with inputs from different rows,
which requires a synchronization operation between different
PEs when accumulating partial sums. Such synchronization
overhead is small when the sparsity is extremely low. However,
in sparse CNN models, the sparsity is usually around 0.1 - 0.2,
which can lead to high synchronization overhead. ExTensor
is parallelized using multiple dot-product, which requires to
compare the index between two vectors. When the sparsity
is high, most indices can be matched. Therefore, ExTensor

TABLE VIII: Comparison with GPU platform using Resnet-152

Device TitanX1 TitanX2 ZC706 ZCU102
Technology 28 nm 28 nm 28 nm 16 nm

Frequency (MHz) 1075 1075 166 200
Precision 32bits float 32bits float 16bits fixed 16bits fixed

conv average
(GOP/s) 212(eff.) 119 134 291

Power (W) 130 134 9.4 23.6
Energy efficiency

(GOP/s/W) 1.63 0.88 12.66 12.33

1 The sparse network is considered as the dense network and accelerated
using CuDNN.

2 The sparse network is accelerated using CuSparse.

TABLE IX: Layer types for latency profiling. S-CONV: spatial
convolution. DW-CONV: depthwise convolution.

Layer ID Filter Type Channel Resolution
C1 1×1 S-Conv 256×256 112×112
C2 1×1 S-Conv 256×256 56×56
C3 5×5 DW-Conv 32×32 14×14
C4 7×7 DW-Conv 3×64 14×14
C5 3×3 S-Conv 32×32 112×112
C6 3×3 S-Conv 64×64 112×112
C7 3×3 DW-Conv 128×128 112×112
C8 3×3 S-Conv 256×256 14×14

outperforms Tensaurus and MatRaptor when the sparsity is
higher than 0.4.

F. Scalability and comparison with GPU

We also test our design on ZC706 platform to demonstrate
the scalability. Our implementation is operated at 166MHz fre-
quency on this platform. ZC706 has 900 DSPs, 1090 BRAMs
and 305K logic cells. We set the configuration parameter as
(TH = TW = 8, TN = 8) and achieve 134.2 GOP/s on
Resnet-152 which means our design can be scaled to dif-
ferent platforms. Besides, we conduct a comparison between
GPU and FPGA platforms. We measure the performance
of dense Resnet-152 using the latest CuDNN on NVIDIA
TitanX platform. To make a fair comparison, we also apply
CuSparse library to accelerate sparse Resnet-152. The sparse
version shows a lower performance because of the memory
uncoalesing problem. In conclusion, our design shows 1.37X
speedup and 7.56X energy-efficiency compared with TitanX
platform.

G. Latency profiling

We first profile the latency of different layer types, which
helps to find the FPGA-friendly neural network architecture. In
Table IX, we list 8 representative layer types including spatial
convolution and depth-wise convolution. Figure 16 shows the
detailed profiling results involving initial time, compute time
and data transfer time. According to Figure 16, the compute
time is the bottleneck for most layers (C4-C8). However,
the transfer time of the layer that shows less data reuse is
higher than the compute time (C1-C2). These layers are often
spatial convolution with 1×1 filter and depth-wise convolution.
Besides, we also observe that the initial time can also affect
the performance when the feature map size is small (C3-C4).
For example, for the C3 layer, the feature map only contains
three input channels, which is less computation-intensive. This
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TABLE X: Performance comparison with other handcrafted models (MobileNetV2 and ShuffleNetV2) and NAS techniques (ProxylessNAS
and FBNet). MobileNetV2-1.0 and ShuffleNetV2-1.0 is the original network

Model Search method HW Search space #Params (M) #OPs (M) FPGA latency (ms) Top-1 (%)
MobileNetV2-0.75 - - - 2.7 290 34.471 67.9
MobileNetV2-1.0 - - - 3.4 600 40.791 72.0
MobileNetV2-1.4 - - - 6.9 770 54.486 74.7

ProxylessNAS-CPU gradient 7 cell-level 4.4 954 61.889 75.3
ProxylessNAS-GPU gradient 7 cell-level 7.1 930 109.421 75.1

ProxylessNAS-mobile gradient 7 cell-level 4.1 640 99.770 74.6
ShuffleNetV2-0.5 - - - 1.4 82 10.867 60.3
ShuffleNetV2-1.0 - - - 2.3 292 16.786 69.1
ShuffleNetV2-1.5 - - - 3.5 598 22.019 72.6
ShuffleNetV2-2.0 - - - 7.4 1182 28.019 74.9

FBNet-A gradient 7 cell-level 4.3 498 56.328 73.0
FBNet-B gradient 7 cell-level 4.2 590 64.532 74.1
FBNet-C gradient 7 cell-level 5.0 750 87.766 74.9

Ours gradient 3 cell-level 3.9 642 27.3 73.3
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Fig. 16: Latency profiling with different layer parameters.

phenomenon can also be found in C4 layer whose channel
number is 32.

H. NAS results

As shown in Table X, compared to other compact models
that are with similar accuracy, our method consistently im-
proves upon inference latency. Specifically, when confronted
with MobileNetV2-1.0 [54], a manually designed architec-
ture that targets no specific platform, our model achieves
1.49X speedup. Note that ProxylessNAS and FBNet are
NAS networks, but target a fixed hardware, e.g., CPU, GPU,
mobile-phones, which did not search architecture parameters.
While maintaining accuracy on par with FBNet-B [34] and
ProxylessNAS-mobile [35], our architecture is 2.36X and
3.65X faster respectively. Nevertheless, our method takes
longer time than [35] in the warmup stage, because we conduct
ADMM pruning on the supernet additionally. Yet since we
can perform architecture search multiple times on the same
supernet, the pruning cost will only occur once.

In our experiments, we choose a conservative sparsity of
30% to avoid significant accuracy loss. Mobilenet-like com-
pact networks on ImageNet have been observed to be less
tolerant to network pruning, which can be attributed to less re-
dundancy in parameters and a more challenging task. Figure 17
shows the accuracy v.s. latency of 300 subnetworks randomly
sampled from the dense and sparse supernet respectively, with
the highlighted point denoting the resultant architecture. This
graph indicates (a) the ranking of the child networks still
correlates with their actual performance since the distribution
characteristics are basically retained after pruning; and (b) the

(a) Subnetworks sampled from 
the pruned supernet

(b) Subnetworks sampled from 
the unpruned supernet

latency
(ms)

to
p-

1 
ac

cu
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Fig. 17: Accuracy v.s. latency of sampled subnetworks.

TABLE XI: The searched network architecture.

Input Operator Ksize Output Expansion
2242 × 3 Conv 3× 3 32 -
1122 × 32 MBConv 3× 3 16 1
1122 × 16 MBConv 5× 5 24 3
562 × 24 MBConv 3× 3 24 6
562 × 24 MBConv 7× 7 40 3
282 × 40 MBConv 3× 3 40 3
282 × 40 MBConv 5× 5 40 3
282 × 40 MBConv 3× 3 80 6
142 × 80 MBConv 3× 3 80 6
142 × 80 MBConv 7× 7 80 3
142 × 80 MBConv 5× 5 80 3
142 × 80 MBConv 3× 3 96 6
142 × 96 MBConv 3× 3 96 3
142 × 96 MBConv 7× 7 96 6
142 × 96 MBConv 3× 3 192 3
72 × 192 MBConv 3× 3 192 6
72 × 192 MBConv 3× 3 192 3
72 × 192 MBConv 5× 5 192 3
72 × 192 MBConv 3× 3 320 6
72 × 320 Conv 1× 1 1280 -
1280 FC - 1000 -

Searched hardware parameters: TW = TH = 3, TN = 22

search algorithm succeeds in finding out an architecture near
the Pareto-front with acceptable latency. We also provide the
resultant network architecture and hardware parameters for
ZCU102 in Table XI.

To evaluate the scalability of our NAS method, we conduct
the search algorithm on ZC706 FPGA and ZCU102 FPGA,
which show different hardware resources. Table XII reports
the results on two devices with different resource constraints
and hardware search space. Based on the size of the available
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TABLE XII: NAS on different device

Device Resource constraints Hardware parameter search range Latency Top-1 acc (%)DSP Logic BRAM Frequency P_N range P_H range P_W range
ZC706 900 350K 1090×18 Kb 166M [4,16] [3,8] [3,8] 33.7 73.0

ZCU102 2520 600K 1824×18 Kb 200M [4,32] [3,8] [3,8] 27.3 73.3

resource, we set the hardware parameter search range which
differs in the output channel number that computed in parallel.
The search algorithm returns models with almost the same
top-1 accuracy under these two settings. As we can see, our
method can adapt to various hardware platforms and reflect
hardware constraints in the search process.

VIII. RELATED WORK

Architecture for dense CNNs on FPGAs. Prior efforts to
accelerate CNNs have shown substantial successes on FPGAs.
Ma [21] et al. make an in-depth analysis of loop optimization
techniques in spatial convolution, which includes loop tiling,
loop unrolling and loop interchange. Zhang [16] et al. focus on
reducing the on-chip memory bandwidth requirement. Wei et
al. [23] implemented CNN on an FPGA using a systolic array
architecture, which can achieve high clock frequency under
high resource utilization. Zhang et al. [55] proposed AccDNN
tool which included high-quality RTL network layer IPs, a
fine-grained layer-based pipeline architecture and an automatic
design space exploration tool. Besides, there are some works
that implement fast algorithms to further accelerate CNNs [47,
56–59].

Architecture for sparse CNNs on ASICs. Recently, some
works explore the dataflow and architecture to accelerate
sparse CNNs on ASICs. Han et al. [60] proposed EIE CNN
accelerator which exploits sparsity both in input feature maps
and filters but only focused on the fully-connected layer. The
fully-connected layer is computed using matrix multiplication,
in EIE design, the matrix is stored in CSC format and multiple
columns are computed in parallel. Parashar et al. proposed
SCNN accelerator with a dataflow named PT-IS-CP (planar-
tiled input-stationary Cartesian-product) [37]. Zhang et al.
[38] presented Cambricon-X accelerator which applies step
indexing techniques. In Cambricon-X design, the nonzeros in
the same row are divided into multiple segments with the
same size in subsequent addresses. And the row that contains
nonzeros less than the size will be aligned to the size. In
recent years, some ASIC accelerators apply hardware-software
design that prunes the weight with structured pattern [15, 31].

Neural Architecture Search. Early NAS algorithms [33]
are inefficient in terms of search time and hardware-
friendliness during inference. There are two trends related to
our work in the subsequent works that tackle these issues.
One-shot NAS [35] constructs a supernet and defines candi-
date architectures as its subgraphs. Rather than training from
scratch each time, the weights of a sampled architectures are
generated by the pretrained supernet. DARTS [61] relaxes
the discrete search space into a concrete distribution by
assigning a real-valued weight to each candidate path. Instead
of optimizing all paths jointly, ProxylessNAS[35] samples a
few paths in each training step to reduce GPU memory con-

sumption. Device-aware multi-objective NAS[34, 35] explicitly
incorporates resource efficiency into the objective function,
either device-related (such as latency, energy consumption)
or device-agnostic (such as FLOPs and model size). These
works often adopt a compact search space that’s inspired by
hand-crafted networks. Depending on the nature of the target
hardware, the efficiency is either measured through runtime
measuring [36], a pre-measured lookup table [34, 35]. In
parallel to our work, there is a recent trend of incorporating
NAS into SW-HW co-design frameworks. This line of works
fuses NN architecture parameters and hardware implementa-
tion parameters into a single search space, thereby optimizing
them simultaneously via stochastic coordinate descent[62], or
gradient-based methods[63]. Our method is to some extent
similar to the one mentioned in [63], in that both adopt a
mobilenet-like search space and a gradient-based approach
to NAS. Nevertheless, to the best of our knowledge, this is
the first work in this area targeting sparsity in both NN and
accelerator design.

IX. CONLUSION

In this work, we propose an FPGA accelerator for sparse
CNNs. We first propose a weight-oriented dataflow that ex-
ploits element-matrix multiplication. Based on this dataflow,
we design an FPGA architecture mainly composed of a tile
look-up table and a channel multiplexer. Besides, we propose
a weight layout where the weights calculated in parallel are
stored continuously. To cooperate with the weight layout, a
channel multiplexer is inserted to locate the address which can
ensure no data access conflict. Finally, we develop an FPGA-
aware NAS approach to find the hardware-friendly network
structure. Experiments demonstrate that our accelerator can
achieve 223.4-309.0 GOP/s for the modern CNNs on Xilinx
ZCU102, which provides a 2.4X-12.9X speedup over previ-
ous dense CNN FPGA accelerators. Our FPGA-aware NAS
approach shows 2X speedup over MobileNetV2 with 1.5%
accuracy loss.
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