
Generating Systolic Array
Accelerators With
Reusable Blocks

Liancheng Jia and Liqiang Lu
Peking University

Xuechao Wei
Alibaba, China

Yun Liang
Peking University

Abstract—Systolic array architecture iswidely used in spatial hardware andwell-suited for

many tensor processing algorithms.Many systolic array architectures are implemented

with high-level synthesis (HLS) design flow.However, existingHLS tools do not favor of

modular and reusable design,whichbrings inefficiency for design iteration. In this article,

weanalyze the systolic array design space, and identify the commonstructures of different

systolic dataflows.Webuild hardwaremodule templates usingChisel infrastructure,which

canbe reused for different dataflowsandcomputation algorithms. This remarkably

improves the productivity for the development andoptimization of systolic architecture.

We further build a systolic array generator that transforms the tensor algorithmdefinition

to a complete systolic hardware architecture. Experiments show thatwecan implement

systolic array designs for different applications anddataflowswith little engineering effort,

and the performance throughput outperformsHLSdesigns.

& TENSOR ALGEBRA IS a prevalent tool of mod-

ern computer applications and is increasingly

deployed onto various embedded devices.

Such a trend demands specialized hardware

accelerators. Systolic array architecture that

features with high computation parallelism

and data reusability using an array of process-

ing elements (PEs) are widely adopted in accel-

erator designs. Google’s TPU uses a systolic

array for the matrix multiply unit.1 Systolic

architectures are also used in many other

applications like convolution, FFT, and matrix

decomposition.

Digital Object Identifier 10.1109/MM.2020.2997611

Date of publication 26 May 2020; date of current version

30 June 2020.

Theme Article: Agile and Open-Source HardwareTheme Article: Agile and Open-Source Hardware

July/August 2020 Published by the IEEE Computer Society This work is licensed under a Creative Commons
Attribution 4.0 License. For more information, see
https://creativecommons.org/licenses/by/4.0/

85

In general, the systolic array architecture is

composed of a grid of PEs that run in parallel

and buffers that transfer data between PEs and

memory, and the PE is further composed of a

compute cell and registers that store and trans-

fer intermediate data. Each PE reads operands

from its neighbors and process calculation in

the compute cell. The result and operands are

transferred to the neighbor PEs at the next time

step. The systolic array architecture avoids non-

local interconnection and reduces the band-

width pressure because only the edge PEs

connects to the memory, which makes it friendly

for modern spatial architectures.

The systolic array architecture

has three important features.

First, the structure is highly mod-

ular, but the functionality of each

module is complex. The same PE

structure is replicated and con-

nected regularly to build the

systolic array. The complexity

mainly comes from the controller

for data transferring in PEs and

memory buffers. Second, there is

a large design space for systolic

arrays. For the PE level, there are

different dataflows, datatype,

compute cell algorithm, data vec-

torization, etc. The PE-array level

configuration includes array

shape, buffer reuse strategy, and

number of time steps, etc. Finally, the systolic

architecture is reusable for different designs.

The same computation logic can be reused for

different systolic dataflows of the same algo-

rithm, and the same systolic array structure can

be reused with different computation cell logics

to implement various algorithms.

Prior works often use three approaches to

implement systolic architecture. 1) Low-level HDL

implementation.2 The systolic array is manually

implemented for a certain algorithm. This gives

high performance, but the development is tedious

and time-consuming. Meanwhile, this limits the

design space that can be explored and cannot

scale to other algorithms. 2) High-level synthesis

(HLS).3�5 HLS allows programmers to use soft-

ware-programming language such as C for hard-

ware development. It promotes productivity but

the design is still difficult. The computation logic

is tightly bound with the dataflow, making it hard

to scale to different dataflows and algorithms. 3)

There has been a growing interest in building a

domain-specific language (DSL) as a front-end of

HLS. The advantage of DSL over pure HLS is the

separation of computation and dataflow definition

in DSL programming, which was first proposed by

an image processing DSL Halide.6 Following works

extends Halide to generate HLS code for hardware

synthesis.7,8 By using DSLs, the dataflow can be

flexibly modified with little efforts without chang-

ing the algorithm description. However, the exist-

ing DSL compiler often generate unreadable HLS

code which limits the optimization

opportunity. The performance of

DSL+HLS solutions are often slower

than manual HDL design because of

the lack of low-level optimizations.

In this article, we propose to

generate systolic array designs

which consider both productivity

and performance. For performance

consideration, we choose to use

RTL level code to avoid HLS gener-

ation. For productivity, we build

reusable hardware component

templates which can be used by

different systolic designs. Our pro-

posed generator can build differ-

ent systolic arrays with the

combination of different tem-

plates. Specifically, we use Chisel infrastructure9

which enables cycle-level control as well as

parameterized and modular hardware genera-

tion. We build configurable templates for the

reusable components such as pipeline control-

lers, data feeders (DFs), and collectors. The gen-

erated components are connected together to

form the complete design of systolic array. The

complete systolic array can be generated with

computation algorithm, dataflow definition, and

the predefined templates.

The contribution of this article can be sum-

marized with the following.

� We extract reusable modules of systolic

arrays and build parameterized and modular

hardware module template to express differ-

ent functionality and configurations.

In this article, we pro-

pose to generate sys-

tolic array designs

which consider both

productivity and perfor-

mance. For perfor-

mance consideration,

we choose to use RTL

level code to avoid HLS

generation. For pro-

ductivity, we build

reusable hardware

component templates

which can be used by

different systolic

designs.

Agile and Open-Source Hardware

86 IEEE Micro

� We build a systolic array generator to gener-

ate Chisel implementation of systolic arrays

with the compute cell and algorithm-level

configurations.

� We evaluate our systolic array generator

using several tensor applications and com-

pare with prior works to show its perfor-

mance and productivity.

Experiment on Xilinx VU9P FPGA shows

that our generated systolic architecture for

GEMM achieves the frequency of 322 MHz on

integer data and 264 MHz on floating-point,

which is faster than most prior works on the

same device. Our generator is able to generate

complete systolic array architecture with less

than 10% input codes compared to HDL,

which remarkably promotes productivity.

SYSTOLIC ARRAY ARCHITECTURE
Our generator framework targets a general

systolic architecture which covers most design

alternatives for systolic arrays. In this section,

we show the major components of a systolic

array including four categories.

� The topology of systolic array architecture.

� The compute cell inside each PE that cont-

ains the core algorithm.

� The dataflow configurations, including PE

size, data movement direction, number of

time steps, and tensor index addressing.

� The controller that controls the behavior of

systolic arrays including data validity and PE

execution status.

We illustrate the building process of the sys-

tolic array with the example of a matrix

multiplication algorithm, but it can be extended

to other systolic algorithms.

Systolic Architecture Topology

Figure 1(a) shows a typical topology structure

of systolic array. The major part is the 2-D grid of

PEs that connects locally. The PEs on the edge con-

nect to DFs and data collectors (DC), which con-

tain SRAM buffers. DFs send data from memory to

PEs and data collectors receive data from PEs. The

first DF/DC modules connect to off-chip memory.

Since the bandwidth between off-chip memory

and the systolic accelerator is often limited, input

data is reused multiple times in DFs. The reuse of

data canbe representedwith loop tiling. The inner-

most loop-nest is directly mapped into the systolic

array execution, and the outer loop-nest uses buf-

fers inDFmodules for data reusing.

PE Compute Cell Design

The core component of a systolic array is the

compute cell inside each PE that performs the

actual computation. The compute cell can be

configured with an arithmetic function, a data

type, and a data vectorization degree, which ena-

bles an SIMD processing of vectorized data.

Additionally, the compute cell can use some

external IPs provided by third-party, such as the

floating-point IP for Xilinx FPGAs.

Systolic Dataflow

The systolic dataflow is the mapping between

the computation loop nest and the systolic array

execution. The execution inside the array can be

represented as a dataflow tuple ðx; y; tÞ, which

means the calculation at index ðx; yÞ of the PE array

at cycle t. Themapping process is a linear transfor-

mation and previous works have extensively stud-

ied the mapping algorithm.3 We use an open-

source systolic dataflow compiler10 as the front-

end of our systolic generator. It generates the data-

flow tuple with the loop definition and linear trans-

formation function. For the matrix multiplication,

there exists two well-known dataflows: Output sta-

tionary (OS) and weight stationary (WS). The

matrix multiplication of two M �N and N �K

matrices can be defined as

C½m;n�þ ¼ A½m;k� �B½k; n� (1)

where 0 < m < M, 0 < n < N, 0 < k < K.

Figure 1. Systolic array and PE structure for matrix

multiplication. (a) Systolic array topology. (b)

Structural parameters for GEMM.

July/August 2020 87

From the mapping between loop indexes and

dataflow tuple, the structural parameters such

as the array size, the direction of data move-

ment, the number of time steps, and tensor

indexes that read, and write at each cycle can

also be generated by the compiler. Figure 1(b)

shows some of the structural parameters for

both dataflows including array size, time steps,

and data dependence. The data dependence is

expressed with a tuple dx ¼ ðp; q; rÞ for each ten-

sor element x. p; q stands for spatial dependence

and r is temporal dependence. For OS dataflow,

each C element depends on the result of the

same PE at the previous cycle, so dC ¼ ð0; 0; 1Þ.
Element of matrix A receives data from PE on the

left, and B receives from upper PE. They do not

depend on the result so there’s no temporal

dependence. dA ¼ ð0; 1; 0Þ and dB ¼ ð1; 0; 0Þ. For
WS dataflow, matrix B stays in PE and matrix C

flows vertically. Finally, the compiler also gener-

ates the tensor index that each PE executes at

every cycle which affects the DF and collector’s

addressing.

Systolic Array Controller

The data movement scheme between systolic

array PEs are different for each tensor elements,

and they are controlled separately. For example,

the systolic tensors transfers to adjacent PEs

every cycle, but the stationary tensors stays in

the PE during the calculation pipeline, but uses

double buffer to transfer data simultaneously.

There are complex data dependencies in the PE

execution pipeline, and it requires a subtle

cycle-level controller to perfectly overlap the

pipelines in order to maximize the throughput.

The controller should determine whether one

data element should stay inside a particular PE,

or should transfer to its neighbor PE. It also con-

trols the execution status of each PE at every

cycle. The controller requires careful design and

optimization, and existing automatic-generated

HLS code often fails to perform well.

GENERATING SYSTOLIC ARRAYS
WITH REUSABLE COMPONENTS

The design space of systolic array involves a

complex set of configurations. The configura-

tions are divided into two categories indicating

whether each of them can be parameterized.

The parameterize-able configurations can be

directly implemented into module class parame-

ters, which is naturally supported by Chisel.

There remain two important parts that are not

parameterize-able: compute cell and PE control-

ler. The compute cell algorithm must be manu-

ally implemented because it often relies on

external IPs or customized algorithm implemen-

tation. The controller of different dataflows

Figure 2. Implementation of systolic PE based on dataflow templates. (a) PE for OS dataflow. (b) PE for WS

dataflow. (c) PE and controller templates. (d) Unified PE implementation.

Agile and Open-Source Hardware

88 IEEE Micro

might vary a lot, which brings great complexity

for implementation and optimization.

Decoupled Generation of Controller and PE

Structure

Figure 2(a) and (b) shows the PE diagram for

OS and WS dataflow in GEMM computation. The

I/O ports of two PEs and compute cells are iden-

tical, but they are connected with different con-

troller modules, and the controller modules are

related to each operand’s data dependence. This

enables the decoupled generation of pipeline

controllers and other systolic array components

since the pipeline controllers are independent

with the application, and PE structure is inde-

pendent with systolic dataflow.

The data dependence of tensors in the sys-

tolic array can be divided into four types based

on whether the spatial part and temporal part of

its dependence tuple is equal to zero. If the spa-

tial part is zero, the tensor elements stays inside

PE during each pipeline stage, otherwise it flows

through PEs. If the temporal part is zero, the cal-

culation does not generate partial results for the

element to be used by next time step, and vice

versa.

We implement four templates of PE pipeline

controllers corresponding to their dependence

type. The circuit diagram and pseudo code are

presented in Figure 2(c). The controllers for sys-

tolic data movement (1) and (2) are straightfor-

ward because the tensor elements always

transfer to its neighbor PEs every cycle. For sta-

tionary data (3) and (4), the controller becomes

complex. One register is used to transfer data

with the compute cell (reg_s), and the other is

used to transfer data with adjacent PEs (reg_f).

The two data transfers are concurrent. When the

computation pipeline is executing, reg_s only

transfer data with the compute cell and reg_f

transfer data with other PEs at the same time.

When the pipeline finishes, the two registers

communicate to update their data for the next

computation pipeline.

Since the dataflow compiler can automati-

cally generate the dependence tuples, it requires

no extra manual effort for choosing the pipeline

controllers for each tensor. According to the

dependence tuples in the “Systolic Dataflow”

section, the PE of OS dataflow contains two

modules (1) and one module (4). PE for WS data-

flow contains one (1), one (2), and one (3).

The complete PE architecture can be built by

connecting the controllers for each tensor with

the PE I/O ports and the compute cell ports.

Both compute cell and PE ports are identical for

the same application regardless of dataflow.

Figure 2(d) shows the pseudocode of the PE

module structure of the generator. First, the gen-

erator instantiates a compute cell, and then it

chooses the controller for each tensor according

to the dataflow expressed in the dependence

tuple. Finally, each inner modules are connected

together to form the complete PE.

Reusable Design of Other Components

Similar as the modular design of controller

inside each PE, we also build DF/DC module tem-

plates according to the four data dependence

types. DFs use double buffer RAM for concurrent

data transaction with PE and off-chip memory.

We also define new parameters for the DF class

to express different data reusing methodology

for loop tiling. There’s no data reuse in dc mod-

ules, and buffers are used for data serialization

since the off-chip memory has low bandwidth.

We use functional programming feature pro-

vided by Chisel to implement the data address-

ing for both on-chip and off-chip memory in DF/

DC modules. We define a function fðx; tÞ which

indicates that the address of xth DF/DC module

reads or writes at cycle t. The function f is gener-

ated with dataflow compiler, and is used as a

parameter of DF/DC templates. In this way, our

generator can support arbitrary tensor access-

ing scheme.

Complete Generation of Systolic Array

After the PE architecture and on-chip mem-

ory buffers are generated, we still need a control-

ler at the top level to maintain the data

synchronization of each operands. It connects

the on-chip buffer with edge PEs, and determines

whether the PE’s input data is valid at each

cycle. For example, WS dataflow requires one

operand to stay inside all PEs before the other

operand is pushed into PE array, and the con-

troller maintains the dependence relationship.

Finally, we conclude the generation process of

the systolic array into a complete compilation

July/August 2020 89

flow. A user needs to specify the loop definition

(with tiling) and compute cell definition. The gen-

eration flow first uses the dataflow compiler to

generate dataflow-related configurations. The

compiler generates different dataflows by using

different transformation functions. Then, the com-

piler use the configurations to generate PE con-

trollers, PE structure, DF/DC modules as well as

the top-level controller. Connection wires are

linked between them according to the data move-

ment directions to generate the complete imple-

mentation of the systolic array. Chisel’s toolchain

compiles it into Verilog code for FPGA synthesis.

EVALUATION

Experimental Setup

We evaluate the performance and program-

ming efficiency of our systolic generator with

GEMM and other tensor applications, and com-

pare the result of GEMM with several existing

HLS-based works.3;7;8 The systolic array designs

are synthesized and implemented on Xilinx

VU9P FPGA platform with Xilinx Vivado 2018.2.

For floating-point multiplication, we use Xilinx’s

Floating-Point IP and integrate it into Chisel

implementation as a BlackBoxmodule.

FPGA Performance Comparison for GEMM

We compare the performance and resource uti-

lization of our generated systolic array architecture

with several state-of-the-art systolic array imple-

mentations in Figure 3. We use the problem size of

M =N = K = 256. On Xilinx VU9P platform, our imple-

mentation with floating-point data type shows

677.3GOp/s which achieves 1.2� and 2.7� speedup

compared with the work by Cong and Wang3 and

Lai et al.7 The improvement comes from two

aspects. First, our implementation uses Chisel’s

ready-valid interface for data communication,

which avoids the unified HLS programming inter-

face that leads to extra data dependence, and the

complex finite state machine generated by HLS

compiler. Second, we optimize frequency by check-

ing the critical path and locating the Chisel code

that caused the timing delay. We optimize our

design by simplifying combinational logic, inserting

registers, and removing unnecessary dependence

between registers. Consequently, our systolic array

design is highly optimized in RTL-level.

The manually optimized HDL solution2 still

has the best performance with 800GOp/s. High-

performance HLS code requires manual loop

transformations such as loop flattening, loop

perfectization, etc. The optimizations are com-

plex in HLS level, but straightforward in HDL

level. Although the DSL+HLS solutions have high

development productivity, but these frame-

works lack the low level optimization and only

show limited performance.

Performance Comparison of Different Dataflow

and Data Types

We evaluate the performance of different

dataflow and data types for GEMM.

Dataflow. We do not observe great perfor-

mance variation between OS and WS dataflows,

and their frequency are similar when other con-

figurations are same. However, WS dataflow is

not as flexible as OS because the reduction size

is fixed to the size of PE array.

Figure 3. Experiment results. (a) GEMM performance and resource utilization compared with prior works.

(b) Performance and resource comparison of data types. (c) Evaluation of different applications.

Agile and Open-Source Hardware

90 IEEE Micro

Data Type. We evaluate the DSP usage and

frequency of four different data types: INT8, INT

16, INT32, and FP32. The result is shown in

Figure 3(b). The 8-bit calculation has the best fre-

quency, and it uses LUTs instead of DSPs for

multiplication. Floating point has the lowest fre-

quency because it consumes most LUT and FF

resources which affects FPGA place-and-routing.

Evaluation of Generation Productivity

To evaluate the productivity of systolic array

generation, we choose three systolic array appli-

cations and compare the line of codes (LOCs) of

our proposed systolic generator and manual HDL

design. Dynamic GEMM refers to GEMM with

dynamic bit width,11 and SW refers to Smith-

Waterman algorithm.12 Since SW uses a one-

dimensional systolic array for only 2-level loop,

wedonot evaluate the performancehere. Our pro-

posed generator only requires 0.03� 0.1� LOCs

compared with generated HDL, which proves the

productivity of our proposed design.

CONCLUSION
We propose an high-performance and reus-

able systolic array generator. We extract reus-

able hardware components that appears in

different dataflows and applications. We decou-

ple the generation of complex pipeline controller

with PE and compute cell structure, and build

parameterized hardware templates for each of

them. With the integration of systolic dataflow

compiler, our generator uses the algorithm

definitions and compute cells to instantiate the

hardware templates and connect them together

to build the complete systolic architecture.

Experiments show that our proposed generator

can achieve better performance compared with

existing HLS-based solutions with 1.2� speedup,

and efficiently simplify the generation process of

systolic array architecture.

ACKNOWLEDGMENTS
This work was supported in part by the

Beijing Natural Science Foundation (No. JQ19014,

L172004) and in part by the Beijing Academy of

Artificial Intelligence (BAAI).

& REFERENCES

1. N. P. Jouppi et al., “In-datacenter performance

analysis of a tensor processing unit,” in Proc. 44th

Annu. Int. Symp. Comput. Archit., 2017, pp. 1–12.

2. D. J. M. Moss et al., “A customizable matrix

multiplication framework for the intel harpv2 xeon

+fpga platform: A deep learning case study,” in Proc.

Int. Symp. Field-Program. Gate Array, 2018,

pp. 107–116.

3. J. Cong and J. Wang, “PolySA: Polyhedral-based

systolic array auto-compilation,” in Proc. Int. Conf.

Comput.-Aided Des., 2018, pp. 1–8.

4. X. Wei et al., “Automated systolic array architecture

synthesis for high throughput CNN inference on

FPGAs,” in Proc. 54th ACM/EDAC/IEEE Des. Autom.

Conf., 2017, pp. 1–6.

5. X. Wei, Y. Liang, and J. Cong, “Overcoming

data transfer bottlenecks in FPGA-based DNN

accelerators via layer conscious memory

management,” in Proc. 56th Annu. Des. Autom.

Conf., 2019, Art. no. 125.

6. J. Ragan-Kelley et al., “Halide: A language and

compiler for optimizing parallelism, locality, and

recomputation in image processing pipelines,” in Proc.

34th ACM SIGPLAN Conf. Program. Lang. Des.

Implementation, 2013, pp. 519–530.

7. Y. Lai et al., “HeteroCL: Amulti-paradigmprogramming

infrastructure for software-defined reconfigurable

computing,” in Proc. Int. Symp. Field-Program. Gate

Arrays, 2019, pp. 242–251.

8. N. K. Srivastava et al., “T2S-Tensor: Productively

generating high-performance spatial hardware for

dense tensor computations,” in Proc. 27th Ann. Int.

Symp. Field-Program. Custom Comput. Mach., 2019,

pp. 181–189.

9. J. Bachrach et al., “Chisel: Constructing hardware in a

scala embedded language,” in Proc. DAC Des.

Autom. Conf., 2012, pp. 1212–1221.

10. H. Genc, “A DSL for systolic arrays,” 2018. [Online].

Available: https://github.com/hngenc/systolic-array

11. H. Sharma et al., “Bit fusion: Bit-level dynamically

composable architecture for accelerating deep neural

network,” in Proc. 45th Annu. Int. Symp. Comput.

Archit., 2018, pp. 764–775.

12. C. W. Yu, K. Kwong, K.-H. Lee, and P. H. W.

Leong, “A smith-waterman systolic cell,” in Proc.

Int. Conf. Field Program. Logic Appl., 2003,

pp. 375–384.

July/August 2020 91

https://github.com/hngenc/systolic-array

Liancheng Jia is working toward the Ph.D. degree

with the Center for Energy-Efficient Computing and

Application, Peking University. His current research

interests include high-performance computation in

GPU and embedded systems. Jia received the

B.S. degree in computer science from Peking Univer-

sity. Contact him at jlc@pku.edu.cn.

Yun(Eric) Liang is currently an Associate Professor

(with tenure) with the School of Electrical Engineering

and Computer Science, Peking University. His

research focuses on heterogeneous computing

(GPUs, FPGAs, ASICs) for emerging applications

such as AI and big data, computer architecture, com-

pilation techniques, programming model and program

analysis, and embedded system design. He has auth-

ored more than 80 scientific publications in premier

international journals and conferences in related

domains. His research has been recognized by best

paper award at FCCM2011 and ICCAD 2017 and best

paper nominations at PPoPP 2019, DAC 2017,

ASPDAC 2016, DAC 2012, FPT 2011, CODES+ISSS

2008. He serves as an Associate Editor for the ACM

Transactions in Embedded Computing Systems and

Embedded System Letters, and serves in the program

committees in the premier conferences in the related

domain including (HPCA, MICRO, DAC, ASPLOS,

PACT, PPoPP, CGO, ICCAD, ICS, FPGA, FCCM). He

is the corresponding author of this article. Contact him

at ericlyun@pku.edu.cn.

Liqiang Lu is currently working toward the Ph.D.

degree with the School of Electrical Engineering and

Computer Science, Peking University. His research

focuses on algorithm-level and architecture-level

optimizations of FPGA for machine learning applica-

tions. Lu received the B.S. degree from the Institute

of Microelectronics, Peking University, in 2017.

Contact him at liqianglu@pku.edu.cn.

Xuechao Wei is currently a Software Engineer with

Alibaba, Hangzhou, China. His research focuses on

computer architecture, accelerator design, and synthe-

sis. Wei received the Ph.D. degree from the Center for

Energy-Efficient Computing and Applications, Peking

University. Contact him at xuechao.wei@pku.edu.cn.

Agile and Open-Source Hardware

92 IEEE Micro

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

