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ABSTRACT
The current Noisy Intermediate-Scale Quantum (NISQ) era suffers
from high quantum readout error that severely reduces the measure-
ment fidelity. Matrix-based error mitigation has been demonstrated
as a promising software-level technique, which performs matrix-
vector multiplication to calibrate the probability distribution with
noise. However, this approach shows poor scalability and limited fi-
delity improvement as the matrix size exponentially increases with
the number of qubits. In this paper, we propose SpREM to exploit
the inherent sparsity in the mitigation matrix. Inspired by the inter-
action mechanism between qubits, we identify structured sparsity
patterns using Hamming distance.With this insight, we propose the
Hamming-Distance Sparse Row (HDSR) compression method and
its format, which can achieve higher sparsity than threshold-based
pruning meanwhile exhibiting great fidelity improvement. Finally,
we propose the computational dataflow of the HDSR format and
implement it on hardware. Experiments demonstrate that SpREM
achieves 98.9% sparsity and a 27.3× reduction in fidelity loss on the
real-world quantum device, compared to threshold-based pruning.
It achieves an average 11.2× ∼ 36.4× speedup compared to Xilinx
Vitis SPARSE library and NVIDIA A100 GPU implementations.
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1 INTRODUCTION
Quantum computers hold the potential to significantly speed up the
solving of certain problems when compared to classical computers,
such as integer factorization and machine learning [20]. However,
we are currently in the Noisy Intermediate Scale Quantum (NISQ)
stage, suffering from gate errors and readout errors, e.g., qubit flip,
where the error rate in quantum computers typically ranges from
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0.1% to 10%. Remarkably, readout errors stand out as a primary
contributor, exhibiting error rates in the range of 2% to 7% [19] on
superconducting quantum computers.

To deal with readout errors, quantum error mitigation can be
achieved through pre-processing methods, such as machine learn-
ing [9] and statistical analysis [15, 17] methods. The matrix-based
mitigation method is a well-known and widely applied that uti-
lizes matrix-vector multiplication to map a probability distribution
with noise to a calibrated one. However, with the increasing num-
ber of quantum bits (qubits) in quantum computer, the size of the
mitigation matrix grows exponentially. For example, a 20-qubit
mitigation matrix requires 8 TB of memory, which far exceeds the
typical computer’s available memory capacity. Additionally, relying
on machine learning method [9], the number of input and output
nodes of the network grow exponentially with the number of qubits.
Moreover, the statistical analysis method Q-BEEP [15] necessitates
continuous iterations to enhance the effectiveness of mitigation,
which demands a substantial amount of time. When mitigating
a 16-qubit GHZ [7] algorithm, the mitigation process surpasses 1
hour. As a result, the application of these methods in large-scale
quantum circuits is constrained by limitations in both time and
space.

To accelerate the mitigation process, certain methods decom-
pose the mitigation matrix into multiple sub-matrices and miti-
gate calculations through tensor products [3, 12]. However, these
sub-matrices neglect the crosstalk between qubits, which severely
reduces the measurement fidelity. Another possibility for memory
reduction and performance acceleration is to exploit the sparsity in
the mitigation matrix, as the mitigation matrix itself contains a con-
siderable amount of near-zero-value quantum states. The challenge
is that the sparsity follows a structured pattern determined by the
quantum interaction mechanism, making standard threshold-based
pruning ineffective. For example, a pruning threshold of 1 × 10−6
leads to 98.6% sparsity in a 16-qubit mitigation matrix. Whereas,
such pruning results in more than a 20× fidelity loss.

In this paper, we propose a hardware-software cooperative ap-
proach called SpREM to exploit the inherent sparsity in the mitiga-
tion matrix. The key insight of SpREM is that the values in the mit-
igation matrix decrease exponentially with Hamming distance (the
number of qubit flips). Building on this observation, we introduce a
pruning method with a structured pattern derived from Hamming
distance. Then, leveraging the non-zero value distribution char-
acteristics, we present a sparse format called Hamming-Distance
Sparse Row (HDSR). This format exhibits less memory requirement
as both row index and column index can be calculated according
to Hamming distance, i.e., only need to store the non-zero values.
Ultimately, based on HDSR sparse format, we design the sparse
matrix-vector multiplication (SpMV) dataflow and its hardware
architecture, which effectively eliminates the computation of zero
output quantum state.

The main contributions of this paper are summarized as follows:
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Figure 1: Matrix-based readout error mitigation process

• We identify the structured sparse pattern of the mitigation matrix
using Hamming distance, which provides higher sparsity and
greatly improves the fidelity.

• We propose a method of compressing the mitigation matrix
based on the Hamming distance. We design the correspond-
ing Hamming-Distance Sparse Row (HDSR) sparse format that
achieves a high compression ratio.

• We propose a SpMV dataflow to accelerate readout error mit-
igation. The architecture utilizes an efficient XOR array and a
reconfigurable adder tree to cooperate with HDSR features.
Compared to threshold-based pruning method, SpREM demon-

strates 98.9% sparsity and achieves a 27.3× reduction in fidelity loss
on real-world quantum device. SpMV dataflow is implemented on
the Xilinx Alveo U50 platform, which shows 11.2× ∼ 36.4× speedup
compared to Xilinx Vitis SPARSE library and NVIDIA A100 GPU
implementations.

2 BACKGROUND
2.1 Quantum Readout Noise
In quantum computing, noise can be categorized based on the stage
of occurrence: initialization noise, quantum gate noise and readout
noise. Readout noise constitutes the primary source of interference
in current superconducting quantum computers, with its generation
outlined as follows:
(1) Imperfect discriminator: current discriminators are ineffec-

tive, with the cumulative accuracy of state-of-the-art discrimi-
nator only reaching 92.66% [11].

(2) Readout latency: qubit decoherence typically manifests as ex-
ponential decay over time. The readout operation features high
latency, approximately taking 400 ns on Google Sycamore [1],
thereby contributing to the decay towards the ground state.

(3) Crosstalk: quantum computers employ frequency divisionmul-
tiplexing technology to read resonant cavity frequency. How-
ever, this can lead to increased crosstalk between qubits.

2.2 Matrix-based Error Mitigation
Figure 1 illustrates the complete matrix-based mitigation process,
delineated into two primary steps: matrix characterization and error
mitigation using matrix-vector multiplication. From the purely
classical noise models perspective, the overall effect of readout
noise transfers the ideal possibility distribution ®𝑝𝑖𝑑𝑒𝑎𝑙 to the noisy
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Figure 2: Compressing mitigation matrix

possibility distribution ®𝑝𝑚𝑒𝑎𝑠𝑢𝑟𝑒 , formulated as:
®𝑝𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 𝐴®𝑝𝑖𝑑𝑒𝑎𝑙 (1)

where the noise matrix 𝐴 is a 2𝑛 × 2𝑛 matrix obtained through 2𝑛
readout-error measurements, referred to as matrix characterization.
Figure 1 shows an example of constructing the first row of the noise
matrix. This process involves preparing the ‘000’ quantum state
and measuring its probability. Ideally, all measurement outcomes
should be ‘000’ state. However, under the influence of readout noise,
the probability of obtaining ‘000’ is reduced to 0.94, and instances
of errors, such as ‘111’, occur with a probability of 0.003. This
probability distribution with noise constructs the initial row of the
noise matrix.

To mitigate readout noise, we can apply mitigation matrix 𝑀

(the inverse matrix of noise matrix 𝐴) through matrix-vector multi-
plication, which is the inverse process of Equation (1):

®𝑝𝑚𝑖𝑡𝑖𝑔𝑎𝑡𝑒 = 𝑀 ®𝑝𝑚𝑒𝑎𝑠𝑢𝑟𝑒 (2)
For example, we diminish the probability of incorrect outcomes

‘001’, ..., ‘101’ and ‘110’, while simultaneously enhancing the proba-
bility of the correct outcomes ‘000’ and ‘111’ in Figure 1. Typically,
the mitigation matrix is a device-dependent property that char-
acterizes the correlation with the environmental conditions and
hardware defects. Therefore, the mitigation matrix 𝑀 can be ap-
plied in various quantum algorithms and serve as prior knowledge
in Equation (2).

3 COMPRESSION USING HAMMING
DISTANCE

3.1 Hamming Sparsity
In quantum computing, Hamming distance serves as a metric to
quantify the disparity between quantum states, reflecting the num-
ber of qubits undergoing flips. A larger Hamming distance implies
a greater disparity between two quantum states, indicating a higher
frequency of flips. In this paper, we consider the infidelity of the
output quantum state as flip errors. Therefore, Hamming distance
is employed to quantify the probability of flip errors occurring.
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Figure 2 shows two examples in a 4-qubit system, where 𝐻𝐷 = 1
means there is no flip or only one qubit flip, and 𝐻𝐷 = 2 means no
flip or one or two flips. Clearly, not flipping or flipping one qubit in
‘0001’ quantum state results in five states ‘0000’, ‘0001’, ‘0011’, ‘0101’
and ‘1001’. When 𝐻𝐷 = 2, we need to flip zero, one or two qubits
in ‘0001’ to yield ‘0000’, ‘0001’, ‘0010’, ‘0011’, ... , ‘1011’ and ‘1101’.
Given an ideal quantum state, the Hamming distance determines
the number of flipped states 𝑁𝑛𝑧 by the following formula:

𝑁𝑛𝑧 =

𝐻𝐷∑︁
𝑖=0

𝐶𝑖
𝑛 =

𝐻𝐷∑︁
𝑖=0

𝑛!
𝑖! (𝑛 − 𝑖)! (3)

where 𝑖 = 0 means no qubit flip.
Given a hamming distance, our compression method is to pre-

serve the value of all flipped states and prune the rest. In other
words, each row in the mitigation matrix only has 𝑁𝑛𝑧 non-zero
values. The column index of each non-zero value is calculated from
the binary of the flipped states. As shown in Figure 2, the ideal
state ‘0001’ has five flipped states ‘0000’, ‘0001’, ‘0011’, ‘0101’ and
‘1001’, retaining the values corresponding to column indices 0, 1,
3, 5, 9. Similarly, 𝐻𝐷 = 2 will preserve more values, which means
a larger Hamming distance will lead to lower sparsity. Generally,
the probability of a specific readout error exponentially reduces
with the number of qubit flips, signifying a very low probability of
encountering many flips. For example, the probability of four qubit
flips is less than 10−5. In summary, we can easily prune redundant
values by setting the Hamming distance threshold 𝐻𝐷 , balancing
the trade-off between mitigation latency and mitigation accuracy.

3.2 HDSR Sparse Format
In order to reduce index decoding overheads, we introduce a sparse
matrix format called Hamming-Distance Sparse Row (HDSR) that
fully utilizes the characteristics of Hamming sparsity. HDSR format
consists of one one-dimensional array 𝑣𝑎𝑙 and two scalars 𝑛 and
𝐻𝐷 . The 𝑣𝑎𝑙 vector stores all non-zero values. Two scalars 𝑛 and
𝐻𝐷 store the number of qubits and the Hamming distance thresh-
old, respectively. Compared to conventional COO or CSR sparse
format, there’s no need to store the column index or row index
for every non-zero value. Instead, we can leverage the Hamming
distance threshold to compute these indices, resulting in significant
memory conservation. Concretely, for the 𝑘𝑡ℎ value, its row index

and column index can be calculated as follows,

𝑟𝑜𝑤_𝑖𝑑𝑥 = ⌊ 𝑘

𝑁𝑛𝑧
⌋

𝑟𝑒 = 𝑘 mod 𝑁𝑛𝑧

𝑐𝑜𝑙_𝑖𝑑𝑥 = 𝑓 𝑙𝑖𝑝 𝑓 𝑢𝑛𝑐 (𝐻𝐷,𝑛, 𝑟𝑜𝑤_𝑖𝑑𝑥, 𝑟𝑒)

(4)

where 𝑁𝑛𝑧 can be obtained from Equation (3). 𝑓 𝑙𝑖𝑝 𝑓 𝑢𝑛𝑐 is the flip
function that gives the column index for the flipped state. Clearly, as
illustrated in Figure 2, given an ideal quantum state and Hamming
distance threshold, we can enumerate all possible flipped states
and sort them according to the binaries. Thus, in Equation 4, the
row index represents the ideal state, and 𝑓 𝑙𝑖𝑝 𝑓 𝑢𝑛𝑐 output the 𝑟𝑒𝑡ℎ
flipped state, i.e., the column index.

Figure 3 illustrates two examples of HDSR sparse format: one
for a 3-qubit mitigation matrix with 𝐻𝐷 = 1 and another for a
4-qubit mitigation matrix with 𝐻𝐷 = 2. For the 3-qubit mitigation
matrix, we can calculate that the number of non-zero values in
each row is 4 based on Equation (3). Dividing the array indices of
the 5th element (1.1) in the 𝑣𝑎𝑙 array by 4 provides its row index
1 (001) in the mitigation matrix, with a remainder of 1, indicating
that it is the 1st non-zero element in this row. Then, according to
Equation (4), the column index is 1 (001). For the 4-qubit mitigation
matrix, we mark the 28th element in the 𝑣𝑎𝑙 array with a red star.
Similarly, dividing by 𝑁𝑛𝑧 (11) yields a row index of 2 (0010), with
a remainder of 6, indicating that it is the 6th non-zero element
in this row. Not flipping, flipping one or two bits on the binary
representation ‘0010’ and sorting results yield ‘0000’, ‘0001’, ‘0010’,
..., ‘1110’, we can identify that the column index is 7 (0111).

Instead of directly pruning the matrix using a threshold, SpREM
considers the mechanism of qubit flip and leverages the character-
istics of Hamming distance. Specifically, our method shows two
advantages:
• Higher sparsity and higher accuracy. Fundamentally, the
real-world mitigation matrix is derived from a large amount of
measurement to profile each value. To go further, the mitigation
matrix may involve some values that cannot perfectly model the
transfer of quantum states due to limited profiling. On the other
hand, our method chooses to theoretically locate the non-zeros
and quantify the qubit interactions with different Hamming dis-
tances, therefore, achieving higher sparsity and higher accuracy.

• Structured sparsity and higher compression ratio. Accord-
ing to the definition of Hamming distance, each row in the pruned
matrix has the same number of non-zeros, which makes it easy to
conduct parallel computing with a balanced workload. Moreover,
HDSR format only needs to store two scalars and one vector of
values, leading to an exponential compression ratio (e.g., from
𝑂 (22𝑛) to 𝑂 (𝑛2𝑛) when 𝐻𝐷 = 1).

4 ARCHITECTURE DESIGN
4.1 HDSR Dataflow
Algorithm 1 presents the pseudocode for the HDSR-based sparse
matrix-vector multiplication (SpMV) algorithm. The algorithm has
a total of four inputs and one output. In addition to the one array
𝑣𝑎𝑙 and two scalars 𝐻𝐷 and 𝑛 in HDSR sparse format, the array
𝑚𝑒𝑎𝑠 signifies the raw data of measured probability. The output
array𝑚𝑖𝑡𝑖 represents the probability after readout error mitigation.

The entire computational process consists of four steps. Firstly,
we need to calculate the number of non-zero elements in each row
using𝐻𝐷 and𝑛 based on Equation (3) (line 2). And thenwe initialize
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Algorithm 1: HDSR Dafaflow
Data: 𝐻𝐷, 𝑛, 𝑣𝑎𝑙 [], 𝑚𝑒𝑎𝑠 [2𝑛]
Result: 𝑚𝑖𝑡𝑖 [2𝑛]

1 //Calculate the number of non-zero elements in each row
2 int 𝑁𝑛𝑧 =

∑𝐻𝐷
𝑖=0

𝑛!
𝑖!(𝑛−𝑖 )! ;

3 //Implement flip function: get flip counts
4 int flip_array [𝑁𝑛𝑧], t=0;
5 for (𝑖𝑛𝑡 𝑖 = 0; 𝑖 < 2𝑛 ; 𝑖 + +){
6 if (# of ’1’ in binary(i) <= HD) {
7 𝑓 𝑙𝑖𝑝_𝑎𝑟𝑟𝑎𝑦 [𝑡] = 𝑖;
8 t = t+1;
9 }} //Implement flip function: get column index

10 int col_idx [𝑁𝑛𝑧];
11 for (𝑖𝑛𝑡 𝑖 = 0; 𝑖<2𝑛 ; 𝑖 + +){
12 for (𝑖𝑛𝑡 𝑗 = 0; 𝑗 < 𝑁𝑛𝑧 ; 𝑗 + +){
13 𝑐𝑜𝑙_𝑖𝑑𝑥 [ 𝑗] = 𝑓 𝑙𝑖𝑝_𝑎𝑟𝑟𝑎𝑦 [ 𝑗] ⊕ 𝑖;
14 }
15 col_idx.sort(); //in ascending order
16 //Perform SpMV
17 for (𝑖𝑛𝑡 𝑘 = 0;𝑘 < 𝑁𝑛𝑧 ;𝑘 + +){
18 𝑚𝑖𝑡𝑖 [𝑖]+ = 𝑣𝑎𝑙 [𝑖 ∗ 𝑁𝑛𝑧 + 𝑘] ∗𝑚𝑒𝑎𝑠 [𝑐𝑜𝑙_𝑖𝑑𝑥 [𝑘]];
19 } }

a flip array by selecting the binary strings, of which the number of
‘1’ is less than or equal to the Hamming distance threshold (lines
4-9). For example, the 4-qubit flip array with 𝐻𝐷 = 1 is:

𝑓 𝑙𝑖𝑝_𝑎𝑟𝑟𝑎𝑦 = [0000, 0001, 0010, 0100, 1000]

Next, we need to find the column indices of non-zero values in
each row by performing XOR calculations between the row index
𝑖 and 𝑓 𝑙𝑖𝑝_𝑎𝑟𝑟𝑎𝑦 (lines 12-14). For example, considering an ideal
state ‘0001’, the valid flips with 𝐻𝐷 = 1 and their column indices
can be obtained as follows.

𝑣𝑎𝑙𝑖𝑑_𝑓 𝑙𝑖𝑝 = [0000, 0001, 0010, 0100, 1000] ⊕ 0001
= [0001, 0000, 0011, 0101, 1001]

𝑐𝑜𝑙_𝑖𝑑𝑥 = [1, 0, 3, 5, 9]
After sorting the column indices in ascending order, we carry

out element-wise multiplication between the corresponding values
in 𝑣𝑎𝑙 and𝑚𝑒𝑎𝑠 , followed by the accumulation of results into𝑚𝑖𝑡𝑖

(lines 17-19).

4.2 Accelerator Architecture Design
We design a hardware accelerator to implement the SpMV in Algo-
rithm 1, mainly consisting of two parts: transformation unit and
reconfigurable adder tree. Though the mitigation matrix is device-
dependent, it varies at different time points (e.g., environmental
noise) and with different qubits usage (e.g., not all qubits are utilized
in a chip). Thus, we regard the mitigation matrix, compressed in
HDSR format, as initially stored in off-chip memory. In a word, all
input data in Algorithm 1 are stored in the external memory at
the beginning. Since SpMV is a communication-intensive operator,
the double buffer is applied to overlap the communication with
computation.

Figure 4 depicts the key component of our architecture that
generates column index and performs SpMV. To acquire the column
index, we introduce an XOR array to parallel the loop in line 12

accumulate
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Figure 4: SpREM architectural details

of Algorithm 1, which conducts XOR operation between every
row index and the static flip array in ROM. The sort function is
implemented via a comparator. As the measurement often contains
many zero-probability quantum states, the comparator not only
sorts the column indices but also detects zeros in the measurement
vector. For example, in Figure 4 we perform XOR operations on
row index 5 with the flip array, acquiring column index 5, 4, ... , 15
and 9, respectively. We sort them in ascending order, then fetch the
corresponding readout possibility (0.02, 0, 0.02, ... , 0.01 and 0.01)
and enter the compute unit.

In the compute unit, we design a reconfigurable adder tree lever-
aging the sparsity of the measurement vector. Specifically, the com-
parator gets the readout probability and detects the zeros to config-
ure adder tree and multiplier array through a series of AND gates
and OR gates. Figure 4 also shows an example of the entire con-
figuration process. The values of readout possibility are compared
with 0, resulting in 1, 0, 1, 1, 1, 0, 1, 1. Consequently, we activate the
multipliers except for the first and fifth ones. Subsequently, these
results are pairwise to perform bitwise AND operations, yielding 0,
1, 0, 1. Therefore, we disable 0𝑡ℎ and 2𝑛𝑑 adders in the first layer.
The rest layers of adders also employ the same method. Modules in
our architecture design are pipelined to reduce latency.

5 EVALUATION
5.1 Experiments Setup
We evaluate SpREM on the Rigetti [14] quantum platform with
a readout error rate ranging from 0.6% to 10.6%. We compare
SpREM against state-of-the-art error mitigation techniques, in-
cluding CTMP [3], Mthree [12] and Q-BEEP [15] using three well-
known quantum algorithms: Bernstein-Vazirani (BV) [2], GHZ [7]
and Deutsch-Jozsa (DJ) [6] algorithms. SpREM sets the𝐻𝐷 to 3 and
Mthree uses a Hamming distance of 3. Meanwhile, Q-BEEP sets
the update frequency to 20. These comparisons are performed on a
server equipped with two AMD EPYC 2.25GHz 64-core CPUs and
1.6TB of memory, using a single thread for execution.

The SpREM architecture is implemented on the Xilinx Alveo
U50 platform operating at 262 MHz. The baseline consists of GPU
and FPGA accelerators. For GPU, we employ cuSPARSE [13] library
and execute it on the NVIDIA A100 GPU. For FPGA, we use Vitis
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SPARSE library [21], running it on the Alveo U50 platform under
309MHz. The mitigation matrix is stored in off-chip memory in the
corresponding sparse format.

5.2 Compression Quality
In Figure 5 (a), we compare SpREM against the threshold-based
pruning method [8] on the 16-qubit BV circuit. We find that un-
der the same sparsity level, SpREM has a lower fidelity loss than
the threshold-based pruning method. With HD of 3 and a pruning
threshold of 1 × 10−6, their sparsity is 98.94% and 98.64%, respec-
tively. However, the fidelity loss of the threshold-based pruning
method is 27.3× greater than that of SpREM. This is because pruning
based on Hamming distance, exclusively linked to the physical prin-
ciples of qubit flips, results in more effective outcomes. Moreover,
this point is also the optimal pruning point for SpREM. The fidelity
loss changes gradually when the sparsity is below 98.94%; however,
beyond this point, the fidelity loss increases sharply, exceeding 1%.

Figure 5 (b) shows the storage capacity required for the mitiga-
tion matrix in COO, CSR, Block CSR [4] and HDSR sparse formats
under varying qubit numbers. Due to the streamlined storage re-
quirements of HSDR, involving only one array and two scalars, it
achieves a significantly higher compression ratio, averaging 3.0×,
2.0×, 2.1× and 2.8× compared to COO, CSR, Block CSR-2x2 and
Block CSR-4x4 sparse format, respectively. Due to the irregular dis-
tribution of zero elements, a 4x4 Block CSR consumes more storage
than a 2x2 Block CSR sparse format.

5.3 Comparison with Prior Methods
In Figure 6 (a), we compare SpREM against state-of-the-art read-
out error mitigation. On average, SpREM is 8.6×, 17.7× and 742.8×
faster than CTMP [3], Mthree [12], and Q-BEEP [15], respectively.
As the number of qubits increases, the sparsity of the pruned ma-
trix also expands, allowing for the avoidance of more calculations
involving zero values. Consequently, the speedup ratio continues
to rise. CTMP accelerates computation speed by decomposing the
mitigation matrix into several sub-matrices, presenting a speed
advantage over Mthree. Due to the need for multiple iterations to
improve fidelity, Q-BEEP consumes a significant amount of time.

Although we demonstrate a higher speedup compared to pre-
vious methods, SpREM’s fidelity still maintains a high level. Com-
pared to CTMP, Mthree and Q-BEEP, the fidelity is improved by
1.2%, 0.05% and 1.7% on average, respectively in Figure 6 (b). Due to
the reduction in the size of the mitigation matrix, Mthree introduces
system error, and CTMP only considers local crosstalk, resulting
in a decrease in fidelity. Q-BEEP is a statistically-based mitigation
method based on the parameters of quantum circuits, and it cannot
effectively mitigate the readout noise.

5.4 Hardware Performance
TABLE 1 compares the execution time for SpREM, Xilinx Vitis
SPARSE library [21], cuSPARSE library [13]. On average, SpREM is
11.2×, 29.5× and 36.4× faster than Vitis SPARSE of CSC format and
cuSPARSE of COO and CSR format. While the COO incurs extra
storage overhead, it enables direct access to the corresponding val-
ues, resulting in 1.2× faster computation compared to the CSR for-
mat. When mitigating a 10-qubit quantum algorithm, the overhead
of data loading prevents the full utilization of parallel computing
advantages. As a result, SpREM achieves a remarkable speedup of
1,003 × compared to the NVIDIA A100 GPU with cuSPARSE-COO
library when 𝐻𝐷 is 3. As the number of qubits increases, the gap
between data loading and parallel computation diminishes. When
the number of qubits is 16, SpREM demonstrates a 21.2× speedup.
The Xilinx SpMV accelerator is tailored for sparse matrices with
varying structures (differing numbers of non-zero values in each
row), necessitating the use of split and merge logic to distribute
multiplication results to corresponding rows. However, this intro-
duces additional time cycles, and the supplementary split andmerge
overhead contributes to an overall increase in computation time,
rendering it slower compared to SpREM.

TABLE 2 shows a breakdown of end-to-end execution time for
SpREM and Xilinx Vitis SPARSE library [21] when 𝐻𝐷 = 4. SpREM
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Table 1: Execution time for SpREM, Xilinx Vitis SPARSE library [21], cuSPARSE library [13] under varying qubit numbers

Hamming distance threshold (HD) = 3 Hamming distance threshold (HD) = 4

10 qubits 12 qubits 14 qubits 16 qubits 10 qubits 12 qubits 14 qubits 16 qubits

Nonzeros 180.22K 1.22M 7.70M 45.68M 395.26K 3.25M 24.10M 164.95M

SpREM 6.00 × 10−3ms 0.034ms 0.21ms 1.39ms 0.011ms 0.088ms 0.60ms 3.95ms

Vitis SPARSE [21] 0.058ms (9.7 ×) 0.34ms (10.0×) 2.15ms (10.2 ×) 12.23ms (8.8 ×) 0.10ms (9.1×) 0.77ms (8.8×) 7.51ms (12.5×) 47.21ms (12.0×)
cuSPARSE-COO [13] 6.02ms (1,003×) 6.29ms (185×) 10.17ms (48.4×) 29.46ms (21.2×) 6.19ms (563×) 7.63ms (86.7×) 18.41ms (30.7×) 89.99ms (22.8×)
cuSPARSE-CSR [13] 6.87ms (1,145×) 7.51ms (221×) 11.55ms (55.0×) 36.35ms (26.2×) 7.05ms (641×) 8.89ms (101×) 22.53ms (37.6×) 115.14ms (29.2×)

Table 2: Breakdown of execution time for SpREM and Xilinx
Vitis SPARSE library [21]

Data Loading Computation Data Storage Overall

10 qubits
SpREM 0.011ms 9.02 × 10−3ms 1.13 × 10−3ms 0.011ms

Vitis SPARSE [21] 0.075ms 0.078 ms 5.96 × 10−3ms 0.10ms

12 qubits
SpREM 0.084ms 0.072 ms 8.80 × 10−3ms 0.088ms

Vitis SPARSE [21] 0.59ms 0.61ms 0.045ms 0.77ms

14 qubits
SpREM 0.59ms 0.49 ms 0.054ms 0.60ms

Vitis SPARSE [21] 5.56ms 5.93ms 0.45ms 7.51ms

16 qubits
SpREM 3.78ms 3.20ms 0.38ms 3.95ms

Vitis SPARSE [21] 35.41ms 37.28ms 2.50ms 47.21ms

experiences a performance bottleneck related to data loading, ac-
counting for 96.5% of the total time. The non-zero values in each
row of the channel partition are padded to address accumulation
latency in the Xilinx SpMV accelerator. Furthermore, compared to
SpREM, additional arrays—column pointer array and row index ar-
ray need to be transmitted. All these factors collectively contribute
to an elevated overhead in data loading.

6 RELATEDWORK
Matrix-based error mitigation. Some work [16] involves con-
structing 2× 2 noise matrices for each qubit and mitigating readout
error through tensor product. CTMP [3] mitigates crosstalk be-
tween two qubits based on continuous-time Markov processes.
Mthree [12] leverages the zero-probability in the measurement dis-
tribution to reduce the size of the mitigation matrix.
State-based error mitigation. In light of the observation that
errors are more prone to occur in state "1" as opposed to state "0",
some works [10, 18] minimize measurements of state "1" through
the inversion of measurement outcomes to mitigate readout noise.
Other error mitigation. Jigsaw [5] separately measures a portion
of the quantum circuit and reconstructs the complete results using
Bayesian reconstruction, effectively eliminating readout crosstalk.
Hammer [17] uses Hamming distance for weighted computation to
eliminate noise. Q-BEEP [15] constructs an error model based on
circuit parameters and corrects errors through iterative Bayesian
network update.

7 CONCLUSION
In this paper, we propose SpREM, an effective Hamming-Distance
Sparse Row (HDSR) compression method that leverages the struc-
tured sparse pattern of the mitigation matrix. This demonstrates
98.9% sparsity and a 27.3× reduction in fidelity loss on the real-
world quantum computer, compared to threshold-based pruning

method. In addition, our hardware accelerator leverages an XOR
array and a reconfigurable adder tree, achieving 11.2× ∼ 36.4×
speedup compared to Xilinx Vitis SPARSE library and NVIDIA
A100 GPU implementations.
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