
QuCT: A Framework for AnalyzingQuantum Circuit by
Extracting Contextual and Topological Features

Siwei Tan
Zhejiang University
Hang Zhou, China

siweitan@zju.edu.com

Congliang Lang
Zhejiang University
Hang Zhou, China

langcongliang@zju.edu.com

Liang Xiang
Zhejiang University
Hang Zhou, China

xiangliang@zju.edu.com

Shudi Wang
Zhejiang University
Hang Zhou, China

shudiwang@zju.edu.com

Xinghui Jia
Zhejiang University
Hang Zhou, China

jxhhhh@zju.edu.com

Ziqi Tan
Zhejiang University
Hang Zhou, China
tanziqi@zju.edu.com

Tingting Li
Zhejiang University
Hang Zhou, China

litt2020@zju.edu.com

Jieming Yin
Nanjing University of Posts
and Telecommunications

Nan Jing, China
Jieming.Yin@njupt.edu.cn

Yongheng Shang
Zhejiang University
Hang Zhou, China

yh_shang@zju.edu.com

Andre Python
Zhejiang University
Hang Zhou, China

apython@zju.edu.com

Liqiang Lu∗
Zhejiang University
Hang Zhou, China

liqianglu@zju.edu.com

Jianwei Yin∗
Zhejiang University
Hang Zhou, China
zjuyjw@zju.edu.com

ABSTRACT
In the current Noisy Intermediate-Scale Quantum era, quantum cir-
cuit analysis is an essential technique for designing high-performance
quantum programs. Current analysis methods exhibit either accu-
racy limitations or high computational complexity for obtaining
precise results. To reduce this tradeoff, we propose QuCT, a uni-
fied framework for extracting, analyzing, and optimizing quantum
circuits. The main innovation of QuCT is to vectorize each gate
with each element, quantitatively describing the degree of the in-
teraction with neighboring gates. Extending from the vectorization
model, we propose two representative downstream models for fi-
delity prediction and unitary decomposition. The fidelity predic-
tion model performs a linear transformation on all gate vectors
and aggregates the results to estimate the overall circuit fidelity.
By identifying critical weights in the transformation matrix, we
propose two optimizations to improve the circuit fidelity. In the uni-
tary decomposition model, we significantly reduce the search space
by bridging the gap between unitary and circuit via gate vectors.
Experiments show that QuCT improves the accuracy of fidelity
prediction by 4.2× on 5-qubit and 18-qubit quantum devices and
achieves 2.5× fidelity improvement compared to existing quantum
compilers [19, 55]. In unitary decomposition, QuCT achieves 46.3×
speedup for 5-qubit unitary and more than hundreds of speedup
for 8-qubit unitary, compared to the state-of-the-art method [87].

∗Corresponding Author: Jianwei Yin, Liqiang Lu

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0329-4/23/10.
https://doi.org/10.1145/3613424.3614274

CCS CONCEPTS
• Hardware→ Quantum technologies.

KEYWORDS
quantum computing, quantum circuit synthesis, quantum error
correction

ACM Reference Format:
Siwei Tan, Congliang Lang, Liang Xiang, Shudi Wang, Xinghui Jia, Ziqi
Tan, Tingting Li, Jieming Yin, Yongheng Shang, Andre Python, Liqiang
Lu, and Jianwei Yin. 2023. QuCT: A Framework for Analyzing Quantum
Circuit by Extracting Contextual and Topological Features. In 56th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO ’23), Octo-
ber 28-November 1, 2023, Toronto, ON, Canada. ACM, New York, NY, USA,
15 pages. https://doi.org/10.1145/3613424.3614274

1 INTRODUCTION
Quantum computing has developed rapidly over the last few decades,
offering polynomial or even exponential speedup in several areas,
such as chemistry simulation [9], database search [29], and combina-
torial optimization [21]. Quantum circuit is a widely-used quantum
programming model that describes the computation by quantum
gates. In the current Noisy Intermediate-Scale Quantum (NISQ)
era [63], strong motivation exists to develop circuit analysis and op-
timization techniques to improve the efficiency of quantum circuit
design. For example, estimating fidelity is critical in minimizing
noise overhead [3, 42, 65, 66], thereby improving the probability of
a circuit producing the correct result [12, 49, 57, 79, 84]. Addition-
ally, for applications represented as unitary matrices (unitaries), it
is necessary to decompose them into circuits with executable basic
gates, such as single-qubit and two-qubit gates [6, 26, 34, 72, 80].

However, the analysis and optimization of quantum circuits
still rely on classical computers, which have to face the trade-
off between accuracy and computational burden. For example,
cross-entropy benchmarking (XEB) [3] and randomized benchmark-
ing (RB) [42] are two widely-used fidelity models. They model gate

1

https://doi.org/10.1145/3613424.3614274
https://doi.org/10.1145/3613424.3614274

MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada Tan et al.

Unitary Decomposition

More tasks: gate cancellation, bug detection ···

Upstream Model:

b) Compilation- and calibration-
level optimizations

Downstream Model:
Circuit Fidelity Prediction
a) Circuit fidelity prediction

.1% .5% .3%

[]

H
ig

h
Si

m
ila

ri
ty []1 0.5 0.25......

[]1 0 0......
[]1 0.5 0......

[][]0 1 0.25

0

......

0 1

......

Vectorization

Gate vector

Input circuit Same neighboring gates (path)

Different
neighboring gates Colors indicate the

similarities of vectors.

Reconstruct

Vectors serve as search
candidates

Target

unitary U

v2 = [...]v1 = [...]

U2V model

Reconstruct

Vectors serve as search
candidates

Target

unitary U

v2 = [...]v1 = [...]

U2V model

Figure 1: Key components of the QuCT framework. In the
upstream model, each gate is transformed into a vector that
captures its neighboring circuit features. The downstream
models take these vectors as input for various analysis tasks,
such as fidelity prediction and unitary decomposition.

fidelities as single values and efficiently estimate the circuit fidelity
via a polynomial function, while they exhibit low accuracy. For
example, estimating the fidelity of a 5-qubit Grover algorithm [29]
on IBM Oslo quantum processor may lead to about 15% difference
between the real and predicted fidelity using the RB-based method.
An alternative approach is to simulate the Master’s equation with
density matrix. This is accurate but shows high computational com-
plexity. For example, the number of qubits is limited to 34 when
simulating noisy circuits on A100 GPU [33]. Techniques of uni-
tary decomposition also suffer from this dilemma. Mathematical
approaches like Column-by-Column Decomposition (CCD) [34]
and Quantum Shannon Decomposition (QSD) [72] can decompose
a 5-qubit unitary in a few seconds, but generate thousands of gates,
leading to poor performance and even failure when deploying to
quantum devices. On the other hand, aiming to minimize the num-
ber of gates, the recent decomposition approach QFAST [87] adopts
a search-based method to approximate the target unitary. However,
this advantage comes at the expense of increased time complexity.
For example, it takes around 60 hours for QFAST to decompose a
5-qubit unitary.

These limitations fundamentally originate from the absence of
an analysis method to extract and preserve circuit features. The
inaccuracy of the XEB- and the RB-based approaches mainly comes

from the inability to model errors caused by gate interactions, such
as crosstalk [84] and pulse distortion [69]. CCD [34] and QSD [72]
inherently follow matrix decomposition theories without consider-
ing the features of the circuit structure. On the other hand, because
of the lack of preserving circuit features in a formal representation,
the accurate approaches [33, 87] have to repeatedly go through
the circuit, requiring a large amount of time. For example, to ac-
curately predict the fidelity, it needs to simulate a circuit multiple
times [33]. Similarly, to get a decomposition solution with fewer
gates, QFAST [87] has to revisit a large number of candidate circuits
and calculate the matrix distance to the target unitary. Ideally, an
extraction should thoroughly cover the contextual and topological
features of the circuit, providing a unified model to enable rigorous
analysis and optimization tasks.

In this work, we propose QuCT, a unified framework that com-
prises an upstream model and multiple downstream models. Fig-
ure 1 shows the overview of QuCT. The upstream model is charac-
terized by its ability to vectorize each quantum gate while taking
the circuit features into consideration. We first formally define
the concept of path that describes the relation of a gate with its
neighboring gates in terms of types (e.g., CX, RZ) and execution
orders (e.g., parallelism, dependency). Each gate is vectorized by
enumerating the paths starting from it. In the gate vector, each
element represents a path, and its value indicates the degree of
correlation between the path and the starting gate. The primary
advantage of vectorization is that it transforms the unstructured
circuit into a set of one-dimensional vectors, which significantly
reduces the arithmetic complexity while retaining the contextual
and topological features. The vectorization model is trained offline
and only needs to be performed once for a target circuit.

The vectorization serves as a new representation of quantum
circuit, allowing various analysis and optimization tasks. In this
work, we introduce two downstream models to perform fast and
accurate fidelity prediction and unitary decomposition, respectively.
In the fidelity prediction model, the circuit fidelity is estimated by
applying a linear transformation on the gate vectors, where the
transformation matrix is trained using a fidelity dataset obtained
from the real execution results of quantum circuits. Moreover, the
prediction provides guidance to mitigate circuit error in gate sched-
uling and hardware calibration. In the unitary decompositionmodel,
the gate vector helps to bridge the gap between the unitary and the
circuit. Different from existing methods that exhaustively enumer-
ate all possible gate combinations as search candidates, our model
effectively reduces the search space by identifying gate vectors
that may be involved in the resulting circuit of the target unitary.
Benefiting from the expressive representation, we can easily obtain
the decomposition solution by reconstructing the circuit based on
the paths recorded in the gate vector.

By extending downstream models, our framework can also be
applied to other analysis tasks, such as gate cancellation and bug
detection. The main contributions of this paper are summarized as
follows:
• We propose QuCT, a unified framework for quantum circuit
analysis, which decouples analysis tasks into an upstream vec-
torization model and multiple downstream models, providing
accurate analytical results with low computational costs.

2

QuCT: A Framework for AnalyzingQuantum Circuit by Extracting Contextual and Topological Features MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada

Quantum circuit

Layer 3 421

Unitary matrix

Figure 2: Example of a quantum circuit with four layers and
its equivalent unitary.

• We propose an accurate model for fidelity prediction, which is
extended from the upstream model. Benefiting from our vector-
ization representation, our model naturally supports the analysis
of the errors caused by gate interactions and offers optimization
techniques to mitigate these errors.

• We propose a unitary decomposition model that achieves re-
markable speedup compared to the state-of-the-art method [87].
Our approach prunes search space efficiently by capturing the
circuit similarity between different unitary matrices.
In the experiment, QuCT reduces the inaccuracy from 24.37%

to 5.68% in the fidelity prediction compared to the XEB-based
model [3] on an 18-qubit superconducting quantum device. Further-
more, QuCT achieves 2.5× fidelity improvement compared to the
current compilers [19, 55]. In the decomposition of 5-qubit unitaries,
QuCT achieves 46.3× speedup and shows 1.3× gate reduction com-
pared to QFAST [87]. QuCT can also decompose an 8-qubit unitary
in 8.3 hours, whereas alternative approaches would take over a
month [87] or generate 26.2× more gates [72]. The source code of
QuCT is publicly available on (https://github.com/JanusQ/QuCT-
Micro2023).

2 BACKGROUND
2.1 Quantum Circuit
Quantum circuit (circuit) is a widely-used quantum programming
model. It consists of a sequential arrangement of quantum gates (gates)
𝐺 that operate on a set of qubits𝑄 . Each quantum gate𝐺 comprises
an operation and operated qubits 𝑄𝑖 :

𝐺 = {𝑔1, 𝑔2, . . . , 𝑔𝑁 }
𝑔𝑖 = (𝑜𝑝, {𝑄𝑖 }), 𝑄𝑖 ∈ 𝑄

(1)

Gates that manipulate one qubit refer to single-qubit gates (e.g., RX,
RY, RZ, H, and U gates), and gates that manipulate two qubits refer
to two-qubit gates (e.g., CX , and CZ gates). Not all gates (e.g.,
3-qubit unitary gates) can be directly implemented on the target
quantum device. Before deployment, they must be transformed into
basic gates that only include specified types of gates determined by
the hardware.

Definition 1. We define layer as the basic unit of the circuit
timeline. In each layer, a qubit can be operated by at most one gate,
and gates within the same layer are executed in parallel.

Each gate is mathematically represented as a unitary matrix
according to its operation and parameters. The overall unitary
of the circuit is calculated by applying matrix multiplication and
tensor-product (⊗) on the unitaries of gates. Figure 2 provides an
example of a circuit with four layers and its unitary, where 𝑈𝐶𝑋 ,
𝑈𝑅𝑋 , 𝑈𝑅𝑍 are unitaries of CX, RX and RZ gates, and 𝐼 represents
the 2×2 identity matrix.

(a) Real and predicted fidelities
of different methods.

Fidelity (%)
100

60

80

40

20 5-q Grover 5-q BV

(b) Numbers of resulting gates and
time cost of unitary decomposition.

#Gate

6-q5-q4-q
1s
1h

60h

30h

1k
3k
5k
7k
9k

>1 week Time
Real CCD

QuCTQuCT
RB-based QFAST

Figure 3: Motivational examples.

2.2 Quantum Circuit Analysis
In this paper, we introduce two representative tasks for quantum
circuit analysis.

Fidelity prediction aims to estimate the probability of getting
correct results of a circuit under noise. In the case of supercon-
ducting quantum computers, errors can be categorized into two
types [25], including: a) gate errors resulting from decoherence
and imperfect implementation; and b) measurement errors occur-
ring when qubit information is read into classical hardware. Recent
works [3, 42, 77] predict the overall circuit fidelity in a polynomial
form as follows:

𝐹𝑐𝑖𝑟𝑐𝑢𝑖𝑡 =

𝑁𝑞∏
𝑞∈𝑄

𝐹𝑞

𝑁𝑞1,𝑞2∏
𝑞1,𝑞2∈𝑄

𝐹𝑞1,𝑞2

𝑁𝑞∏
𝑞∈𝑄

𝑀𝐹𝑞, (2)

where 𝑁𝑞 , 𝑁𝑞1,𝑞2 denote the number of single-qubit gates of qubit 𝑞
and the number of two-qubit gates between qubits 𝑞1, 𝑞2. 𝐹𝑞 , 𝐹𝑞1,𝑞2 ,
and 𝑀𝐹𝑞 represent the single-qubit gate, the two-qubit gate, and
the measurement fidelities, respectively. We define gate error as
(1 − 𝐹𝑞) or (1 − 𝐹𝑞1,𝑞2). In addition to the aforementioned types of
errors, errors from unexpected gate interactions between gates, e.g.,
crosstalk [57] and pulse distortion [69].

Unitary decomposition takes a unitary as input and decom-
poses it into matrices of basic gates, resulting in an equivalent
circuit. Early methods, such as CSD [34], QSD [72], and CCD [34]
decompose a unitary into a sequence of smaller unitaries follow-
ing mathematical equations (e.g., cosine-sine decomposition func-
tion [78]). In contrast, recent methods [6, 15, 67, 87] apply search-
based methods. To approximate the target unitary, they iteratively
search and insert gates to the end of the circuit. QFAST [87] is
the state-of-the-art search-based approach that aims to minimize
the number of gates after decomposition. In this paper, we extend
QFAST as one of our downstream models.

2.3 Motivational Examples
Many fidelity optimization frameworks [3, 20, 42, 57, 69] use Equa-
tion 2 to predict fidelity, while they fail to capture the noise re-
sulting from gate interactions, such as crosstalk [84] and pulse
distortion [69]. The accuracy of the prediction largely determines
the performance of the optimization. For example, UREQA [61]
prioritizes prediction accuracy. By considering the noise variance
in different types of operations, it achieves a fidelity improvement
of around 10% in qubit mapping compared to [75]. However, it
ignores gate interactions related to the circuit structure. Additional

3

https://github.com/JanusQ/QuCT-Micro2023
https://github.com/JanusQ/QuCT-Micro2023

MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada Tan et al.

ReconstructionStage 1: Random Walk

1st Walk

Step 2

Path1 Path2 Path3

Step 1

αk if gate has this path

2nd Walk

Path4 Path6Path5

Step 1: add path

with table index 1

Step 2: add path

with table index 2

Step 3: add path

with table index 4

Step 4: add path

with table index 5

Reconstructed sub-circuit

Stage 2: Vectorization

Gate vector

Stage 1-2

Target gate

3 4 521

[]1, 0, 0.25, ... 0
N

Path table

[
]0

1 1,

2 α,

3 0,

4 α2,

5 α2,

Path

...

Gate vector

Indexmatch

Figure 4: Two-stage process to vectorize a gate in the circuit and the reconstruction process from the gate vector.

experiments and optimizations are required to identify and miti-
gate specific types of interactions [3, 20, 42, 57, 69]. As their results
cannot be integrated into an overall prediction function, the error
types they focus on have to be optimized separately. Each opti-
mization may decrease one type of error while increasing another.
Figure 3 (a) displays the real fidelities for running the Grover [29]
and the BV [5] algorithms on the 5-qubit IBM Oslo quantum device.
The fidelities predicted by Equation 2 (with model parameters de-
rived from RB) exhibit differences of 15.54% and 10.40% compared
to the real fidelities.

Unitary decomposition plays an important role in circuit opti-
mization [11] and algorithm design [37]. However, early decom-
position methods, including QSD [72], CSD [80], and CCD [34],
introduce massive redundant two-qubit gates between qubits that
actually show no entanglement. Figure 3 (b) presents an exam-
ple. CCD, the default decomposition method of Qiskit [2], requires
more than 9,000 gates to decompose a 6-qubit unitary. Alterna-
tively, searched-based methods may achieve more than 3× gate
reduction by searching and inserting the gates that make the cir-
cuit closer to the target unitary. However, the search process is
very time-consuming. For example, QFAST [87] takes an average
of 60.92 hours to decompose a 5-qubit unitary and over a week to
decompose a 6-qubit unitary.

The low accuracy and high time complexity of these methods
fundamentally come from the lack of a representation to convert
the circuit features into mathematical forms. The inaccuracy of
prior prediction models [3, 42, 61] mainly results from the unthor-
ough extraction of topological information (the connection and
dependency between quantum gates), rendering it impossible to
model the complex gate interactions. On the other hand, prior
unitary decomposition models [15, 67, 87] exhaustively rely on
arithmetic approaches without leveraging the contextual informa-
tion (the parameter space of quantum gates), incurring massive
invalid exploration during the search.

This paper aims to develop an intermediate representation to
preserve both contextual and topological features while keeping
formulation-friendly. Considering that a quantum circuit is natu-
rally a sparsely-connected graph, we find that vectorization is an
effective approach to extract features of such graphs [36, 47]. Our
key insight is to leverage random walk [47] to vectorize the circuit

such that gate interactions are captured. Clearly, each element of the
vector is assigned a value, which gives the degree to how the gates
in a region affect each others. The vector representation enables
accurate and fast modeling for various analysis tasks. As shown in
Figure 3, QuCT achieves a 1.7× and 2.7× reduction in inaccuracy
for these two algorithms by modeling gate interactions on the IBM
Oslo quantum processor. Besides, by bridging the gap between the
unitary and circuit structure using gate vectors, QuCT achieves
remarkable speedup compared to QFAST, meanwhile requiring less
number of gates.

3 UPSTREAMMODEL: GATE VECTORIZATION
Before introducing our vectorization model, we define path as fol-
lows.
Definition 2. A path is a chained relation between multiple gates.
A 𝑘-step path is formulated as follows,

Path = 𝑔1
𝑟1−→ 𝑔2

𝑟2−→ · · · 𝑟𝑘−→ 𝑔𝑘+1, (3)

where 𝑟𝑖 denotes the relation between two gates, which is cate-
gorized into three types: former, next, and parallel. These terms
indicate that gate 𝑔𝑖+1 is in the former, the next, and the same lay-
ers of gate 𝑔𝑖 , respectively. As shown in Stage 1 in Figure 4, taking
Path3 as an example.

Path3 = CX𝑞3, 𝑞2
𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙
−→ RZ𝑞1

𝑛𝑒𝑥𝑡−→ RX𝑞2

is a path starting from the gate CX𝑞3, 𝑞2. It describes a sub-circuit
where the gate RZ𝑞1 is in the same layer as CX𝑞3, 𝑞2, and the gate
RX𝑞2 is in the next layer of RZ𝑞1.

3.1 Vectorization
To generate paths for each gate, we apply random walk [47] in the
circuit. Random walk is a popular algorithm in the graph domain to
explore neighboring information of nodes. When extending a path,
the next gate is randomly selected from gates that share a relation
with the former gate. For the gate that requires vectorization, we
collect multiple paths starting from it within a specific number of
steps. Figure 4 shows six paths of the CX𝑞3, 𝑞2 gate. The first walk

4

QuCT: A Framework for AnalyzingQuantum Circuit by Extracting Contextual and Topological Features MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada

(b) Average numbers of paths for each gate
under different numbers of qubits.

Nstep = 2

0 40 80 120

350
300

400
450

13
10

16
19
22

#P
at

h
#Qubit #Qubit

0 40 80 120

Nstep = 1

(a) Restrict the path under
the processor topology.

10 12 15

13
14

Figure 5: Minimizing the size of the path table. (a) The ad-
jacent qubits of 𝑞12 include 𝑞10, 𝑞13, and 𝑞15; (b) Paths are
generated under the IBM brick-like topology.

is responsible for the following paths:
Step=0. Path1 : CX𝑞3, 𝑞2

Step=1. Path2 : CX𝑞3, 𝑞2
𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙
−→ RZ𝑞1

Step=2. Path3 : CX𝑞3, 𝑞2
𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙
−→ RZ𝑞1

𝑛𝑒𝑥𝑡−→ RX𝑞2 .

The second walk generates the following paths:
Step=0. Path4 : CX𝑞3, 𝑞2

Step=1. Path5 : CX𝑞3, 𝑞2
𝑓 𝑜𝑟𝑚𝑒𝑟
−→ CX𝑞2, 𝑞1

Step=2. Path6 : CX𝑞3, 𝑞2
𝑓 𝑜𝑟𝑚𝑒𝑟
−→ CX𝑞2, 𝑞1

𝑛𝑒𝑥𝑡−→ RZ𝑞1 .

These two walks generate six paths starting from the same target
gate but in different directions.

The total number of paths for a given gate is determined by
the number of steps (𝑁𝑠𝑡𝑒𝑝) per walk and the number of walks
(𝑁𝑤𝑎𝑙𝑘), which are configurable parameters. The number of walks
determines the number of neighboring sub-circuits sampled as
circuit features. The number of steps determines the maximum
number of gates in these sub-circuits. Accordingly, the upper-bound
number of paths for one gate can be estimated as (𝑁𝑠𝑡𝑒𝑝𝑁𝑤𝑎𝑙𝑘 + 1),
where 1 is the 0-step path.

The quantum gate is then vectorized by comparing its paths to a
static path table. To be specific, the paths in this table are offline
generated by enumerating all possible parameters of Equation 3.
For each gate, the dimension of the vector equals the size of the path
table. If a 𝑘-step path in the path table matches a path generated
in the random walk, the corresponding element value is set to 𝛼𝑘 ,
where 𝛼 ∈ (0, 1] is a decay parameter. For example, in Figure 4,
the generated 2-step Path3 matches the 4th path in the path table.
Thus, the 4th element of the gate vector is set to 𝛼2. Shorter paths
are assigned with a larger value, which follows the intuition that
the analysis should pay more attention to adjacent gates since they
are more likely to exhibit a higher interaction.

3.2 The Size of Path Table
According to Equation 3, the size of the path table depends on the
number of steps and the settings of relation 𝑟𝑖 and gate 𝑔𝑖 . Relation
𝑟𝑖 has only three types, while gate 𝑔𝑖 includes operated qubits and
the gate type. The gate type is hardware-dependent, which consists
of the basic gates supported by the target hardware. For example,
the gate set of Google Sycamore hardware is composed of

√
𝑋 ,

√
𝑌 ,√

𝑊 and 𝑓 𝑆𝑖𝑚 gates [3], while the gate set includes ID, RZ, SX, X,
and CX gates for IBM Manila device. In this paper, our gate set

includes RX, RY, RZ, and CZ gates derived from our self-developed
superconducting quantum hardware.

Since each path aims to capture the interaction between the
starting gate and its neighboring gates, we impose that, for each
path in the table, the qubits of gates 𝑔𝑖 should be physically con-
nected to the qubits of the starting gate under the device topol-
ogy. For example, as shown in Figure 5 (a), only qubits 𝑞10, 𝑞15
and 𝑞13 are connected with qubit 𝑞12. Thus, starting from the gate
RZ𝑞12, paths can only involve gates that operate on 𝑞10, 𝑞15 and 𝑞13,
e.g., RZ𝑞12

𝑝𝑎𝑟𝑟𝑎𝑙𝑒𝑙
−→ CX𝑞13, 𝑞14. The table size is, therefore, mainly

determined by the complexity of the device topology, not the num-
ber of qubits. We also remove redundant paths that lead to the
equivalent circuit. For example, RX𝑞3

𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙
−→ RZ𝑞1

𝑛𝑒𝑥𝑡−→ RX𝑞2 and
RX𝑞3

𝑛𝑒𝑥𝑡−→ RX𝑞2
𝑓 𝑜𝑟𝑚𝑒𝑟
−→ RZ𝑞1 describe the same circuit features.

Figure 5 (b) shows the number of paths for each gate under the
brick-like topology, where there are around 22 and 450 paths for 128-
qubit IBM Washington processor with 𝑁𝑠𝑡𝑒𝑝 = 1, and 𝑁𝑠𝑡𝑒𝑝 = 2,
respectively.

3.3 Expressivity
There have been various representations to extract graph features
such as graph kernel [44], graph sampling [83], spectrum analysis
[28], and random walk [47]. Among them, random walk is an effec-
tive approach for sparsely-connected graphs, e.g., recommendation
systems [36] and knowledge inference [47]. The sparsity is also a
prominent feature of quantum circuits. However, different from
the prior random walk-based methods that capture the similarity
between different nodes (e.g., finding similar preferences of two
customers) by comparing the paths of each node, our vectorization
is expressive to preserve the surrounding information of the target
gate for circuit reconstruction. Clearly, the contextual features are
recorded in the parameter 𝑔𝑖 of Equation 3, including gate types
and operated qubits. The topological features are preserved as the
relation in the path. By referring to the path table with the nonzero
elements of the gate vector, we can identify the paths related to the
target gate and partially reconstruct the circuit. The target gate is
at the head of the path. Layers of neighboring gates can be retraced
according to their relations with their previous gates.

Figure 4 presents an example of reconstruction. According to
the gate vector and the path table, the 1st, 2nd, 4th, and 5th paths
in the table are identified. The first path contains only the starting
gate. Based on the relation in these paths, we can resketch the sub-
circuit within the step. The ability of circuit reconstruction offers
the opportunity to the downstream models that involve circuit
generation from the gate vector, such as the unitary decomposition.

4 DOWNSTREAMMODEL 1: CIRCUIT
FIDELITY PREDICTION AND
OPTIMIZATION

This section presents the methodology for modeling and optimizing
circuit fidelity using our vectorization technique.

4.1 Fidelity Prediction
QuCT revises the prediction in Equation 2 by formulating the error
𝐸 of each gate as the dot-product between its vector 𝑣𝑖 and a weight

5

MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada Tan et al.

Sub-

circuit1

Sub-

circuit2

F1=30%

F2=25%

Apply different

grouping schemes.

Still walk across

different sub-circuits.

Train separately

by Equation 4.

Dataset:

Figure 6: Workflow to use separable circuits to train weight
vector𝑊 .

vector𝑊 :
𝐸 (𝑣𝑖) =𝑊 ⊤𝑣𝑖 ,

𝐹𝑐𝑖𝑟𝑐𝑢𝑖𝑡 =
∏
𝑔𝑖 ∈𝐺

(1 − 𝐸 (𝑣𝑖))
∏
𝑞∈𝑄

𝑀𝐹𝑞 .
(4)

The weight vector𝑊 is trained by the stochastic gradient descent
algorithm [39] based on a fidelity dataset. This dataset is hardware-
dependent. The dataset consists of the ground-truth circuit fidelities
by executing a set of randomized circuits on the target quantum
device. The ground-truth fidelity of each circuit is labeled via the
Hellinger fidelity function [51] as follows:

𝐹
𝑔𝑟𝑜𝑢𝑛𝑑𝑡𝑟𝑢𝑡ℎ

𝑐𝑖𝑟𝑐𝑢𝑖𝑡
= 1 − 1

√
2
| |
√︁
𝑃𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 −

√︁
𝑃𝑖𝑑𝑒𝑎𝑙 | |2, (5)

where 𝑃𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 and 𝑃𝑖𝑑𝑒𝑎𝑙 are the measured and ideal (noise-free)
distributions, respectively.

Here, we briefly introduce the reason for choosing dot-product
as the equation to predict the gate fidelity. According to [40], the
error of a gate is mathematically equal to the sum of the trace of
the Kraus operators, where each Kraus operator formulates the
evolution caused by a source of noise. This suggests that the dot-
product is consistent with mathematical intuition. In other words,
each weight evaluates the effect of a path, which may correspond
to the trace of a source of noise. Specifically, the weight element for
the 0-step path models noise from the gate itself, while weights for
other paths represent noise from the interaction among gates. The
weight element of 0 suggests the path is not related to a source of
error. We also tried other methods like machine learning and deep
learning. They show limited improvement yet are accompanied by
a disproportionately high computational complexity.

In the fidelity dataset construction, we allow more randomness
when generating circuits to ensure the generality of the model.
Clearly, given the hardware constraint of basic gates and topology,
we generate circuits with different numbers of gates and propor-
tions of two-qubit gates by randomly inserting gates. Compared
to the circuits in RB [42] (only Clifford gates) and XEB [3] (only
repeated blocks), our fidelity dataset can cover more complex inter-
actions between gates. In QuCT, our dataset comprises 2000 circuits
for each device with 5 qubits or 18 qubits, with the circuit depth
ranging from 5 to 160. The time of generating the dataset takes
around 1.7 hours per device (including 20.0 minutes of QPU access
time).

We also allow generating separable circuits for processors with
more than hundreds of qubits in the fidelity dataset construction.
Circuits executed on these processors usually have a large number
of gates, making the final fidelity vanish to zero. A large amount

(a) Compilation level (b) Calibration level

0.4
0.3
0.2
0.1

Error(%)

Optimization space
60%565853

0.52%=0.22+0.12

 +0.40%

Predict

W(%)

Path

0.22 0.12 0

···

Has a high

crosstalk

0.40

Figure 7: Fidelity optimization techniques.

of zero-valued fidelities means less valid information, which neg-
atively affects the training convergence and the model accuracy.
To address this, the separable circuits used in the fidelity dataset
restrict the entangled qubits into sub-circuits within a small number
of qubits. For example, in Figure 6, the circuit can be partitioned
into two independent sub-circuits that execute simultaneously on
the target hardware. Each sub-circuit has a relatively smaller num-
ber of gates, leading to a higher fidelity. We label the fidelity of
each sub-circuit and use it for training. Note that the paths of gate
vector 𝑣𝑖 still walk across different sub-circuits, thereby capturing
the interactions of the entire circuit. To improve generality and
accuracy, we apply breadth-first-search to generate different group-
ing schemes. Since qubits are sparsely connected in real-world
quantum hardware, the fidelity dataset is sufficient to cover all
grouping schemes. For example, there are 236 grouping schemes
under the 128-qubit IBM Washington device topology, while the
fidelity dataset contains thousands of circuits.

4.2 Fidelity Optimization
As QuCT provides fine-grained gate fidelity prediction and inter-
pretable weight, it allows various optimization techniques to im-
prove the circuit fidelity.

Compilation-level optimization. A typical compilation flow
includes routing and scheduling. The routing pass transforms the
circuit to satisfy the processor topology. Clearly, it inserts SWAP
gates to change the qubit mapping, ensuring that all two-qubit gates
can be implemented by the coupler of the processor. By precisely
predicting the fidelity, QuCT can be integrated with existing com-
pilers [12, 61, 87] to find the routing solution with the best fidelity.
For instance, the recent SATMAP [55] compiler uses a MAX-SAT
solver to find the routing solution that minimizes the number of
gates, which leads to different output circuits due to heuristic search.
By extending SATMAP with our prediction model, we can guide
the compilation to select the output circuit with maximum fidelity
(Abbr. QuCT_route_opt). Scheduling means adjusting the layer of
gates to improve the fidelity under the execution dependency. For
example, in Figure 7 (a), the RY gate operated on 𝑞1 can be moved
to any of the following three layers with the functionality of this
circuit remaining the same. By analyzing the circuit fidelity under
each scheduling choice, QuCT helps to find the gate allocation with
the highest predicted fidelity (Abbr. QuCT_sched_opt).

Calibration-level optimization. Calibration tries to locate the
error in the circuit and tune the amplitudes and phases of pulses
to improve the fidelity [38, 41]. By setting the decay parameter

6

QuCT: A Framework for AnalyzingQuantum Circuit by Extracting Contextual and Topological Features MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada

 QuCT: only generates
candidates from gate vectors.

Reconstruct

 No

Yes

Distance: 0.7 0.5

(a) Enumerate all unitary gates

(b) Calculate distance

(c) Pick circuit

Distance ≤ threshold?

Candidate gate vectors

[0, 1, 0,

..., 0]

[0, 0, 0.5,

..., 1]

Current

circuit:

Circuit +

candidates: ···

U2V Model

···

Candidates from vectors

 QuCT: directly outputs the

circuit with basic gates

NoYes
All basic gates?Output

=
,,

(d) QFAST: requires recursive

search until to basic gates

unitary

gates

basic

gates

Output

···

Figure 8: Workflow of the unitary decomposition.

to 1 during vectorization, QuCT provides an interpretable weight
(Equation 4). As there is a one-to-one correspondence between
weights and paths, by identifying the path with a large weight, crit-
ical source of noise are efficiently located. For example, calibrating
crosstalk is a necessary step to mitigate error at the pulse level [45],
which requires 𝒪(𝑁 2) execution on quantum hardware [57]. Us-
ing QuCT, we can easily find such crosstalk by identifying large
weights with 1-step paths. Figure 7 (b) provides an example. In
the table, according to the value of each weight element, the RX
gate on 𝑞1 increases the error of its parallel CX gate on 𝑞2 and 𝑞3
by 0.4%. As a 0.4% reduction is significant compared to average
gate error (∼0.1%), this suggests high crosstalk that requires more
attention to minimize this error.

5 DOWNSTREAMMODEL 2: UNITARY
DECOMPOSITION

The second application of our vectorization model is used to de-
compose unitaries. We integrate our vectorization method with
QFAST [87], which is a state-of-the-art method for achieving the
minimum number of decomposed gates. It adopts an A∗ recursive
algorithm, which iteratively approximates the target unitary by
inserting unitary gates until the matrix distance is within the thresh-
old. As shown in the left part of Figure 8, a typical QFAST iteration
consists of four steps:
(a) For the current circuit (e.g., a 4-qubit circuit that has been

inserted with two unitary gates), enumerate all possible small
unitary gates as candidates (e.g., 2-qubit and 3-qubit unitary
gates) that have fewer qubits than the current circuit.

(b) Insert these candidate gates at the end of the current circuit,
search their parameters, and calculate the updated matrix dis-
tance with the target unitary.

(c) Select the updated circuit with the minimum distance and check
whether the distance is less than the threshold. If not, return
to step (a).

(d) If the distance is within the threshold, check whether all unitary
gates are in the basic gate set. If not, decompose them following
steps (a) to (c).

QFAST suffers from a long decomposition time due to exhaustive
searching among various candidates. On the one hand, each unitary
gate has numerous parameters to search before calculating the
distance. The number of parameters increases exponentially with
the number of qubits, e.g., it takes more than 30 minutes to search
among 10 candidate gates for an 8-qubit circuit in one iteration.
On the other hand, the search process also requires decomposing
all unitary gates into basic gates, which dramatically increases the
number of iterations.

The right party of Figure 8 illustrates how QuCT accelerates the
decomposition process. Instead of exhaustively enumerating a large
number of candidate gates, our approach is to consider a gate vector
as a search candidate. The gate vector serves as an intermediate
representation between the unitary and the circuit. By identifying
the vectors that may be involved in the circuit of the target unitary,
we can prune the candidate space. More importantly, we can eas-
ily reconstruct the circuit with basic gates according to the paths
recorded in the gate vector, eliminating the additional overhead of
the decomposition to basic gates.

5.1 Unitary-to-Vector Model
Since each gate vector implies the features of a sub-circuit (see
Section 3.3), the purpose of the U2V model is to find the candidate
vectors that tend to be part of the resulting circuit of the target
unitary. The U2V model serves as the bridge between unitaries and
gate vectors, where the sub-circuits reconstructed from these candi-
date vectors will replace the search space of QFAST. To build such a
model, we obtain a U2V dataset composed of <𝑢𝑛𝑖𝑡𝑎𝑟𝑦, {𝑣𝑒𝑐𝑡𝑜𝑟𝑠}>
pairs, derived from a set of random circuits generated with the same
scheme mentioned in Section 4.1. To obtain high-quality decompo-
sition results, these circuits are optimized using Qiskit transpiler [2]
to minimize the number of gates. We then run our upstream vec-
torization model to obtain the vectors and calculate the unitaries
of these circuits. Note that the circuit is not necessarily optimal
because the U2V model aims to capture the potential gate vectors of
the target unitary rather than the entire circuit. In other words, by
combining these vectors, we might get an alternative circuit with
a more compact representation. Based on this dataset, we train a
random forest model [7] with 𝑘 decision trees. Given a unitary as
input, each tree will predict a gate vector that shows the maximum
probability of appearing in this unitary.

As the data size and the unitary input size can be very large,
we develop two pruning strategies to reduce the search space and
accelerate the overall decomposition process. First, considering
that the decomposition is an iterative insertion process starting
from the beginning of the circuit, we only choose the vectors from
the gate in the first layer when generating unitary-vectors pairs.

7

MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada Tan et al.

>99.9

99.0-99.5
<99.0

99.5-99.9

Gate fidelity (%)18 qubits
5 qubits

Single-qubit (%) Two-qubit (%) Measurement (%)
5 qubits 99.92 99.37 96.77
18 qubits 99.97 99.16 94.91

Table 1: Two quantum devices involved in the experiment.

Second, to accelerate the inference of the U2V model, we apply
eigen-decomposition [23] to project the original unitary to a low-
dimensional matrix, where the Eigen matrix is determined by se-
lecting the most significant eigenvectors of the unitaries in the U2V
dataset.

Our vector-based approach is different from the template-based
approach that selects candidates from a limited-size template library.
The vector-based approach searches the circuit by learning the
mapping from unitary to path features via the U2V model, resulting
in a high-quality solution. In contrast, the template-based approach
shows smaller design space due to its coarse-grained construction
of circuits, which leads to more gates and search time.

5.2 QuCT Decomposition Flow
For the current circuit and its unitary 𝑈𝑐𝑢𝑟𝑟𝑒𝑛𝑡 in each iteration,
the objective is to find the rest circuit. To approximate the target
unitary𝑈𝑡𝑎𝑟𝑔𝑒𝑡 , the input unitary𝑈𝑈 2𝑉 _𝑖𝑛𝑝𝑢𝑡 of the U2V model of
this iteration equals the unitary of the rest circuit, which should
satisfy the following equation:

𝑈𝑡𝑎𝑟𝑔𝑒𝑡 = 𝑈𝑈 2𝑉 _𝑖𝑛𝑝𝑢𝑡𝑈𝑐𝑢𝑟𝑟𝑒𝑛𝑡 . (6)

Note that𝑈𝑈 2𝑉 _𝑖𝑛𝑝𝑢𝑡 is on the left side of𝑈𝑐𝑢𝑟𝑟𝑒𝑛𝑡 . Thus, the input
of the U2V model can be calculated as follows:

𝑈𝑈 2𝑉 _𝑖𝑛𝑝𝑢𝑡 = 𝑈𝑡𝑎𝑟𝑔𝑒𝑡𝑈
−1
𝑐𝑢𝑟𝑟𝑒𝑛𝑡 . (7)

The U2V model then outputs gate vectors that may be involved in
the circuit. We reconstruct the circuits from these vectors, which
serve as the search candidates. Mathematically, the candidate space
of QFAST includes unitaries with all combinations of qubits, where
the size of the space is

∑𝑁𝑞−1
𝑖=2 𝐶𝑖

𝑁𝑞
. For example, when 𝑁𝑞 = 8,

the candidate space of QFAST is 246. The candidate space of our
method equals the number of the trees (𝑘) in the model. Empirically,
𝑘 = 2𝑁𝑞 is adequate to find the appropriate candidate, which leads
to a 15.4× space reduction when 𝑁𝑞 = 8.

6 EVALUATION
6.1 Methodology
Quantum hardware.We use two superconducting quantum de-
vices to evaluate our fidelity prediction model: a) a custom device
with 5 Xmon qubits in a chained topology; b) a custom device with
18 Xmon qubits arranged in a 6×3 grid qubit topology; Both devices
use RX, RY, RZ, and CZ gates as basis gates, with gate times of 30
ns and 60 ns for single-qubit and two-qubit gates, respectively. The
single-qubit gate fidelity and two-qubit fidelity of each device are
benchmarked by isolated RB [42]. For simultaneous RB[24], the

Fidelity prediction

Conifg. Upstream model Downstream model

Qubit 𝑵𝒔𝒕𝒆𝒑
Path
table 𝑾

Fidelity
dataset

Training
time

Test
dataset

Config-0 18 0 45 45 2,000 1.2 min 2,000
Config-1 18 1 3,420 3,420 2,000 10.5 min 2,000
Config-2 18 2 11.5k 11.5k 2,000 95.6 min 2,000
Config-3 5 2 342 342 2,000 5.4 min 2,000
Config-4 350 1 99.2k 99.2k 2,000 175.0 min 2,000

Unitary decomposition

Conifg. Upstream model Downstream model

Qubit 𝑵𝒔𝒕𝒆𝒑
Path
table 𝑾

Fidelity
dataset

Training
time

Test
dataset

Config-5 4 4 1,033 8 2,000 18.4s 110
Config-6 5 4 2,206 10 2×104 354.3 s 110
Config-7 8 4 28.2k 16 4×104 81.7 h 110

Table 2: Setup of QuCT models.

Abbreviation Benchmark
HS Hamiltonian simulation [9]
ISING Linear Ising model[37]
QSVM Quantum support vector machine [68]
QFT Quantum Fourier transformation [74]
GHZ Greenberger–Horne–Zeilinger state [27]
BV Bernstein-Varzirani algorithm [5]
QEC Quantum error correction code [8]
MUL Quantum multiplier
QNN Quantum neural network [4]
QGAN Quantum generative adversarial network [50]

Table 3: 10 benchmarks used in the experiments

single-qubit and two-qubit fidelities of both devices are above 99%
and 98%, respectively.

Quantum simulator. To demonstrate the scalability of QuCT,
we design 7 simulators. We perform simulations on the Qiskit Aer
QASM simulator (version 0.39.0) using 50-, 100-, 150-, 200-, 250-,
300-, and 350-qubit circuits. To increase efficiency, the simulation
is based on the grouping scheme in Section 4.1 that avoids entan-
glement across the groups. The error of the gate itself is modeled
as bit flip, phase flip, and depolarization. The error from the inter-
action between gates is modeled by applying an RX operator with
a random angle ([−𝜋/20, 𝜋/20]) to a 1-step path. In other words,
the two gates of a 1-step path will be added with the RX operator if
this path is injected with a noise. Under these settings, the fidelity
of these 7 simulators is 99.88% - 99.97% for single-qubit gates and
99.21% -99.68% for two-qubit gates, benchmarked by isolated RB.

QuCTmodel. Table 2 shows the detailed configuration of QuCT
models. The parameters of the upstream model include the number
of qubits and the number of steps of random walks. The decay (𝛼
in Figure 4) is set to 0.4, which will be evaluated in the following
sections. The upstream model has 8 configurations; the first five are
used for fidelity prediction and optimization, and the other three are
used for unitary decomposition. Config-0 to config-3 are evaluated
on real-world hardware. Config-4 is the configuration for the 350-
qubit simulator. We do not list the configurations for the other six
simulators for simplicity. We write a Python program to implement

8

QuCT: A Framework for AnalyzingQuantum Circuit by Extracting Contextual and Topological Features MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada

Real fidelity (%)

Pr
ed

ic
t f

id
el

ity
 (%

)

Config-2

Avg.

Std.

=

=

5.68%

4.69%

RB

Avg.

Std.

=

=

16.25%

12.66%

XEB

Avg.

Std.

=

=

24.37%

10.12%

Config-1

Avg.

Std.

=

=

5.80%

4.69%

60 80 10040
40

60

80

100
Config-0

Avg.

Std.

=

=

10.53%

5.70%

QUEST

Avg.

Std.

=

=

10.34%

7.73%

Duration (μs)
1

1.5

2

3

2.5

Figure 9: Comparison between the real and predicted circuit fidelities using QuCT (config-0 to config-2), the RB-basedmodel [42]
and the XEB-based model [3] and QUEST [82] on the 18-qubit device. Avg. means the average prediction inaccuracy. Std. means
the standard deviation.

random walks in our upstream model. In our fidelity prediction
model, we adopt Adam optimizer [39] to implement stochastic
gradient descent. Before training the prediction model, we set the
learning rate to 0.01, the batch size to 100, the split ratio to 0.8, and
the maximum number of epochs to 100. The training stops when
reaching the maximum number of epochs. We use Scikit-learn [62]
to implement random forest in our unitary decomposition model.
The unitary is reduced to the matrices with the top-10 Eigenvalues
when generating the U2V model.

Dataset. The fidelity dataset is a hardware-dependent dataset,
which is built by collecting the real results on the target quantum
device. The circuits are generated by the method introduced in
Section 4.1, where the maximum size of the groups is 5. We ran-
domly divide the dataset into training and testing sets. For each
device, both the training and testing datasets contain results of
2000 circuits. The circuit depth ranges from 5 to 100. Each circuit is
sampled 2000 times on the target device. For the config-3 model, we
also evaluate it using the benchmarks from Table 3. In the unitary
decomposition, we set the number of steps to 4 so that the gate
vector can be reconstructed to a larger sub-circuit.

Baselines.We compare our fidelity prediction model with the
RB-based model [42], the XEB-based model [3] and QUEST [82]. We
set the learning rate of QUEST to 5×10−4, the batch size to 100, the
split ratio to 0.8, and the number of epochs to 1000. We compare our
fidelity optimization techniques with SATMAP compiler [55] and
crosstalk-aware scheduling compiler [19]. For the unitary decom-
position, we use three baselines, including QFAST [87], Squander
[67], CCD [34], and QSD [72].

6.2 Fidelity Prediction
Figure 9 shows the fidelity predicted by QuCT, the RB-based model
[42], and the XEB-based model [3] on the 18-qubit device. The x-
axis and y-axis represent the real fidelity and the predicted fidelity,
respectively. The color indicates the different duration times of
circuits. The prediction inaccuracy is defined as Δfidelity= |real
fidelity−predicted fidelity|.

Evaluation on 18-qubit device using randomized circuits.
As shown in Figure 9, the point above the diagonal line indicates
the overestimation of the fidelity, and the point below means un-
derestimation. Overall, QuCT with config-2 achieves the lowest
prediction inaccuracy (5.68%), leading to 2.8×, 4.2×, and 1.8× reduc-
tion compared to the RB-based model (16.25%) [42], the XEB-based
model (24.37%) [3] and QUEST [82] (10.34%), respectively. The high

(a) Prediction inaccuracy under

different circuit durations.

△
Fi

de
lit

y
(%

)

1 1.5 2
Duration (μs)

32.5
5

10
15
20

30
25

QUEST Config-2RBXEB

Day
1 2 43 5

5
10
15
20
25

△
Fi

de
lit

y
(%

)
(b) Evaluating different choice of the
decay parameter α.

Decay

△
Fi

de
lit

y
(%

)

0.2 0.4 0.6 0.8 1

6.0
5.9
5.8

6.1
6.2
6.3

5.7
5.6

Config-2 Config-3

QUEST Config-2RBXEB
Finetune 200Finetune100

#Grouping scheme
△

Fi
de

lit
y

(%
)

7.0
7.5
8.0
8.5
9.0

101 20 30 40 50

Reach the maximum
accuracy

Less generality

(c) Evaluation of device drift. (d) Inaccuracy under different numbers
of grouping schemes.

Figure 10: Detailed analysis of fidelity prediction model.

accuracy of QuCT results from the unified extraction of circuit
features, which covers various sources of noise. In addition, the
dataset of RB and XEB shows less generality, which further reduces
accuracy. Though QUEST tries to model the gate interaction using
a graph neural network, it is a coarse-grained approach that is less
accurate when estimating the fidelity of each individual gate. And
it uses a neural network with numerous parameters, taking a lot of
time for convergence during training.

The prediction of QuCT is also more stable, which reduces the
standard deviation from 10.12% to 4.69%. Improved stability is ob-
tained by our vectorization, which effectively models the interac-
tions between gates, whereas RB and XEB only consider the noise
from individual gates and hence tend to overestimate the fidelity.
Config-0 has the highest inaccuracy among all downstream models
as this configuration sets the number of steps to 0, which also means
considering each gate an individual unit, but it is more accurate
than RB and XEB as it is operation-aware. When comparing config-
1 to config-2, there is little accuracy improvement (0.12%). It implies
that the interaction between gates mainly happens within two steps

9

MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada Tan et al.

30
40

20
10

0

50

HS ISING QECGHZ MUL AvgQSVMQFTQNN QGANBV

△
Fi

de
lit

y
(%

)

RBQuCT (Config-3)

Figure 11: Fidelity prediction on the 5-qubit device.

(among three gates). Thus, we can speculate that 2 steps are suffi-
cient to extract circuit features. This also matches the theory and
empirical observations in many works [32, 69, 71], as current hard-
ware implementation applies sparse signal lines between qubits
to enable the interactions. The signal transmitted in these lines
exponentially decreases in both temporal dimension (the duration
of the circuit) and spatial dimension (the length of the signal lines),
making the noise local.

In Figure 9, we can observe that the inaccuracy of RB and XEB
increases over the duration of the circuit. To further investigate this
trend, Figure 10 (a) illustrates the predicted fidelity under different
duration times, which matches the aforementioned observation. In
a 2𝜇s duration period, the maximum inaccuracy of XEB is 27.34%. In
contrast, it is 5.55% of QuCT with Config-2, which achieves 21.79%
inaccuracy reduction.

In Figure 10 (b), we evaluate the different choices of the decay pa-
rameter 𝛼 used during vectorization. For both 5-qubit and 18-qubit
devices, the best prediction accuracy is achieved when the decay
reaches 0.4. A larger decay makes the model pay more attention to
longer paths, while these paths result in little noise.

Figure 10 (c) presents the prediction accuracy under the device
drift across 5 days, where the device is calibrated every two days.
The ground-truth fidelity is collected every day and compared with
different prediction models. We can see that QuCT with config-
2 outperforms all other models, which achieves 6.30% - 17.78%
inaccuracy reduction. To further improve the accuracy, we propose
to fine-tune the downstream model using the updated fidelity of
100 and 200 circuits (requiring less than 5 minutes), which shows
8.27% and 20.12% inaccuracy reduction, respectively.

Figure 10 (d) explores the prediction accuracy with different
numbers of grouping schemes. For our 18-qubit device with grid
topology, there are 59 grouping schemes in total. When applying
10 grouping schemes, the inaccuracy converges to 6.14%. With only
one grouping scheme, the inaccuracy is increased to 9.13%.

Evaluation on 5-qubit device. Implementing these bench-
marks on the 18-qubit device requires a large number of gates,
which could lead to near-zero fidelity. Thus, we deploy them on the
5-qubit device with config-3. The results are shown in Figure 11.
On average, QuCT reduces the prediction inaccuracy from 27.52%
to 7.73% over 10 benchmarks. The prediction from the RB-based
method is more inaccurate on these benchmarks compared to the
results on the 18-qubit device with randomized circuits. One reason
for this phenomenon is that these benchmarks exhibit a higher
proportion of two-qubit gates, resulting in more than 30% inaccu-
racy. For example, RB is 39.47% and 43.70% inaccurate on QGAN
and QSVM benchmarks as they have 36.85% and 37.32% two-qubit
gates, respectively. Another reason is that these benchmarks are
computationally expensive, which reduces the prediction accuracy

(a) Prediction inaccuracy on

50-350 qubit simulators.

(b) Prediction inaccuracy

under different amount of

injected noises.

50 150 250 350

5

15

25

35

#Qubit

△
Fi

de
lit

y
(%

)

QuCT RB

2ndQuartile

1stQuartile

Average

#Injected noise (×102)
5321 10

△
Fi

de
lit

y
(%

)

30
20
10

40
50
60

7.0×

RBQuCT

Figure 12: Prediction inaccuracies on the simulatorwithmore
qubits. The results of (b) are obtained from the 100-qubit
simulator.

as analyzed before. For example, QFT (7.3𝜇s) and QEC (6.7𝜇s) are
the top-2 circuits with the longest duration time, making the inac-
curacy reach nearly 40%. In contrast, QuCT shows less than 10%
inaccuracy in 7 out of 10 benchmarks. The relatively large inaccu-
racy of QuCT occurs in the QGAN and QFT benchmarks because
their qubit measurement is associated with a uniform probabil-
ity distribution, leading to insensitivity to noise when calculating
fidelity.

Evaluation on 50-qubit to 350-qubit simulators using ran-
domized circuits. To demonstrate the scalability, we evaluate
QuCT on multiple simulators with different numbers of qubits, as
shown in Figure 12 (a). Compared to the RB-based method, QuCT
shows 4.3× inaccuracy reduction with a much lower standard devi-
ation (13.72% that of RB). The prediction on the 350-qubit simulator
(config-4) is more accurate compared to the prediction on the real-
world quantum device (config-1 in Figure 9), although both these
two configurations set the number of steps to 1. This may result
from the fact that real-world device is affected by additional com-
plex noise that may stem from the interactions of the environment
and the defect of classical hardware, which is hard to model by
QuCT.

We also test the robustness of QuCT with different numbers of
injected noises, as shown in Figure 12 (b). The inaccuracy of the
RB-based method linearly increases with the number of injected
noises. However, QuCT shows only a little drop in prediction ac-
curacy for the circuit with more noise. When the number of noise
increases to 1K, the RB-based method fails to predict the fidelity
(53.14% inaccuracy). By contrast, the inaccuracy of QuCT is only
7.61%, which effectively reduces the inaccuracy by a factor of 7.0×.
The noise simulated by injecting random RX gates to 1-step paths
represents the gate interactions. The strength of QuCT, therefore,
lies in its ability to model this complex noise.

6.3 Fidelity Optimization
Compilation-level optimization.We integrate our fidelity pre-
diction model with SATMAP compiler [55] to optimize the fidelity
during circuit routing, abbreviated as 𝑄𝑢𝐶𝑇_𝑟𝑜𝑢𝑡𝑒_𝑜𝑝𝑡 . For gate
scheduling, we compare to the technique proposed by Ding et al.
[19], which applies a crosstalk-aware scheduling scheme. The sched-
uling optimization of QuCT is abbreviated as 𝑄𝑢𝐶𝑇_𝑠𝑐ℎ𝑒𝑑_𝑜𝑝𝑡 .

10

QuCT: A Framework for AnalyzingQuantum Circuit by Extracting Contextual and Topological Features MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada
E

rr
or

 re
du

ct
io

n

6

4
2
0

8
10

HS ISING QECGHZ MUL AvgQSVMQFTQNN QGANBV
(a) Comparison of different routing and scheduling schemes for
fidelity optimization

(b) Detecting injected noise by
identifying the large weights.

(c) Fidelity improvement after

calibrating the injected noises.

Circuit duration (μs)
1.0 2.0 3.0 4.0

90
80

60
70

100

29.16%

AfterBefore

Fi
de

lit
y

(%
)

(top 4.7%) #Path (×102)
0 20040 600 900

11

13

9

15

17 1,750

Find 93.0% noises

within top 4.7%

paths

#I
de

nt
if

ie
d

no
si

es
 (×

10
2)

Case6:SATMAP+Ding. et al

Case2:Qiskit_route+QuCT_sched_opt

Case5:Qiskit_route+Ding. et al

Case1:QuCT_route_opt+Qiskit_sched
Case3:QuCT_route_opt+QuCT_sched_opt Case4:SATMAP +Qiskit_sched

Figure 13: Evaluation of different fidelity optimization tech-
niques. The results of (a) are obtained from the 5-qubit device.
The results of (b) and (c) are obtained from the 350-qubit sim-
ulator.

The comparison baseline is set as the default routing and schedul-
ing strategy of Qiskit with the optimization level 3. To quantitatively
evaluate different optimizations, we define the error reduction as:

Error of (Qiskit_route+Qiskit_sched)
Error after optimization

Figure 13 (a) presents the comparison of different routing and
scheduling schemes for fidelity optimization. Compared to the
Qiskit baseline, QuCT shows an average error reduction of 5.0× (see
case 3). We also compare to the combination of SATMAP [55] and
Ding et al. [19] (see case 3 and case 6), where QuCT outperforms in
10 benchmarks and achieves 2.5× improvement of error reduction.

The routing optimization of QuCT improves error reduction
from 1.2× to 1.4× compared to SATMAP [55] (case 1 and case 4).
The reductions are marginal because the optimization space of the 5-
qubit circuits is relatively small, where the default routing scheme of
Qiskit [48] also works well. SATMAP aims to minimize the number
of gates. Although a small number of gates is usually associated
with a high fidelity, SATMAP still lacks a model to quantitatively
analyze the fidelity.

As for the scheduling-level optimization, QuCT shows 1.7× im-
provement compared to [19] (see case 2 and case 5). [19] mainly
targets to mitigate the noise from crosstalk. However, instead of
modeling a certain type of noise, QuCT optimizes the circuit in a
global view by finding the allocation of each gate with maximum
fidelity. [19] provides higher error reduction in the benchmarks that
have a large number of two-qubit gates, such as the QGAN, QSVM,
and QEC, since they involve higher crosstalk noise. While for other
benchmarks, it even fails to outperform Qiskit. For example, [19]

suggests a negative effect (0.8× reduction) in the BV benchmark,
but QuCT still provides 2.4× reduction (case 5).

Calibration-level optimization. As mentioned in Section 4.2,
we can locate the critical path that involves noise by identifying the
weight with a large value in Equation 4 and improve the fidelity by
calibrating these noisy paths. To evaluate the effectiveness of this
technique, in config-4, there is a total number of 99,176 paths with
1,750 of them injected with noise. In Figure 13 (b), paths are sorted
according to their corresponding weight element. QuCT can find
93.0% of noise-injected paths (1627 paths) from the top 4.7% paths
in the path table. By calibrating these detected paths, QuCT leads
to a longer qubit coherence time with 29.16% fidelity improvement,
as shown in Figure 13 (c).

6.4 Unitary Decomposition
Config-5, config-6, and config-7 are models for 4-qubit, 5-qubit,
and 8-qubit unitary decomposition, respectively. Both training and
decomposition are performed on the server with two AMD EPYC
64-core CPUs. The test data for each model are 110 unitaries with
100 random-generated unitaries and 10 unitaries of various bench-
marks in Table 3. The threshold is set to 0.01, which means the
decomposition is completed when the distance between the target
unitary and the current unitary of the circuit is within 0.01. To
make a fair comparison, all programs can only use a single thread
for decomposition. Table 4 summarizes the decomposition results,
including the number of gates, the depth of the circuit, and the time
of the decomposition process. For the approach that takes more
than three weeks, we terminate the decomposition process and give
a rough estimation of the possible required time.

Evaluation of time cost. For 4-qubit and 5-qubit random uni-
taries, QuCT achieves 4.6× and 46.3× speedup, respectively. For
benchmark unitaries, it is 2.2× and 5.8×, which drops slightly since
the benchmark unitary is less complicated compared to random
unitaries. Compared to Squander [67] that aims to minimize the
number of CNOT gates, QuCT achieves 8.1× and 55.6× for decom-
posing 4-qubit and 5-qubit random unitaries. Similar to QFAST, the
long decomposition time of Squander mainly comes from the fact
that it applies sequential optimization of gate parameters and inserts
fewer gates in each iteration of the searching. When the number of
qubits goes to 8, QFAST and Squander may require several months
or years to find the decomposition solution. QuCT successfully de-
composes all 8-qubit random unitaries and benchmark unitaries in
144.4 hours and 26.1 hours, respectively. Our speedup significantly
increases when the number of qubits increases because the search
space of QFAST increases exponentially with the number of qubits.
Our approach can effectively prune the search space by identifying
suitable gate vectors as candidates.

Evaluation of the number of gates. Compared to mathemati-
cal methods like CCD [34] and QSD [72]—although they are faster
than QuCT—the decomposition solution of QuCT requires fewer
gates, resulting in higher reliability of circuits. For example, for
8-qubit benchmark unitaries, QuCT reduces the average number
of gates from 8.9 × 104 to 3,392.2 compared to QSD. Compared to
QFAST, QuCT also shows some improvement in the quality of the
resulting circuit, e.g., 1.3× gate reduction on 5-qubit random uni-
taries. This improvement is mainly attributed to the reconstruction

11

MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada Tan et al.

CCD
[34]

QSD
[72]

Squander
[67]

QFAST
[87] QuCT Impro.

R
an

do
m

4q

#Gate 1,080.5 859.4 298.2 226.3 206.3 1.1×

Depth 170.8 120.1 157.9 74.1 67.4 1.1×

Time 1.5 s 0.5 s 14.5 h 8.2 h 1.8h 4.6×

5q

#Gate 3,592.9 3,817.2 806.3 887.5 688.1 1.3×

Depth 465.5 528.1 428.2 294.1 227.7 1.3×

Time 3.6 s 2.1 s 511.2 h 426.2 h 9.2 h 46.3×

8q

#Gate 7.8×104 9.3×104 - - 2.1×104 -

Depth 3.1×104 3.6×104 - - 1.3×104 -

Time 111.5 s 33.0 s > 1 y > 1 y 144.4 h >59×

B
en

ch
m
ar
k

4q

#Gate 236.9 270.5 44.3 41.0 40.6 1.0×

Depth 169.5 193.5 19.1 17.0 18.2 0.9×

Time 0.9 s 0.7 s 1.7 h 1,341.8 s 619.9 s 2.2×

5q

#Gate 405.0 472.0 197.2 181.3 165.2 1.1×

Depth 302.3 348.7 100.1 93.6 91.1 1.0×

Time 0.8 s 0.5 s 94.5 h 3.3 h 2043.0 s 5.8×

8q

#Gate 8.1×104 8.9×104 - - 3,392.2 -

Depth 6.4×104 7.6×104 - - 1,948.2 -

Time 158.2 s 262.5 s > 6 mons. > 6 mons. 26.1 h >165×

Table 4: Comparison of unitary decomposition methods.
The improvement of QuCT is calculated by comparing to
QFAST [87].

(b) Training and decomposition time

with different size of U2V dataset.

50
100
150

250

9

10

11

12

13

200

U2V dataset (×104)
2 4 6 8 10D

ec
om

po
si

tio
n

(h
)

T
ra

in
in

g
(s

)

(a) Breakdown of the speedup in the decomposition of 5-qubit unitary.
QFAST Opt1 Opt1+2 Opt1+2+3

0

15

30

45

Sp
ee

du
p

3.6×

2.5×
5.2×

46.3×

Reducing the number
of candidatesReducing the number

of iterations

Reducing the time
spent for each
candidate

(c) Decomposition time

with multi-threading.

#Qubit

60.9

T
im

e
(h

)

2.7

8.327

2.9

0.3 0.5

QuCT
QFAST

5q4q 8q

Figure 14: Detailed analysis on unitary decomposition.

of the candidate vector. Clearly, according to Figure 8, the paths
of the gate vector have already contained information on how to
use basis gates to construct the circuit. However, QFAST has to
apply a recursive approach to decompose unitary gates into basis
gates, which may fall into a local optimal. We also observe that
Squander [67] outperforms QFAST in decomposing 5-qubit random
unitaries, but it still requires 1.2× gates compared to QuCT. This
is because Squander only updates part of gate parameters in each
iteration, which may lead to the local optimal.

Decomposition time breakdown. As mentioned in Section
5, the speedup of QuCT is achieved by the following optimization
processes.
• Opt1: the total number of search iterations is reduced for two
reasons. First, our U2V model helps to identify the gate vectors
that share similarities with the target unitary. Second, each gate
vector can directly construct the circuit by basis gates.

• Opt2: in each iteration, the number of candidates is reduced
thanks to the U2V model.

• Opt3: for each candidate, QuCT requires less time to search gate
parameters since the reconstructed circuits are composed of basis
gates with fewer parameters. For example, a two-qubit unitary
gate used in QFAST includes 16 parameters, while a CZ gate
used in QuCT has no parameter to search.

Figure 14 (a) shows the speedup breakdown for the decomposition
on 5-qubit random unitaries. The three optimizations contribute
to 5.2×, 2.5×, and 3.6× speedup compared to QFAST, respectively.
QFAST spends 54.5 hours for the decomposition of the QEC unitary,
while QuCT takes 728.3 seconds by benefiting from opt3.

Evaluation of different sizes of U2V dataset. Figure 14 (b)
shows the training time and decomposition time with different
sizes of the U2V dataset. We observe that increasing the dataset
size can reduce the decomposition time as a larger dataset helps
to capture more similarity between unitaries and vectors. When
the dataset size reaches 2×104, the reduction of the decomposition
time is not obvious. This may be because this data size is sufficient
to extract the features of 5-qubit circuits. The training time mainly
consists of the time to build the data set and the random forest
model. Both processes have linear time complexity with the dataset
size. Thus, the overall training time is linear to the dataset size.
Note that the decomposition time is significantly greater than the
training time (less than 250 seconds for the 5-qubit model).

Further acceleration using multi-threading. As different
candidates can be searched in parallel, we can leverage the multi-
threading technique to further accelerate the decomposition. Based
on our test, the sweet points for 5-qubit and 8-qubit unitary decom-
position are 10 and 16 candidate vectors, respectively. Figure 14 (c)
presents the decomposition time after both QuCT and QFAST [87]
applying multi-threading. As a result, for 5-qubit random unitaries,
QuCT with multi-threading reduces the decomposition time from
9.2 hours to 2.9 hours and shows 20.9× speedup compared to QFAST.
For 8-qubit random unitaries, QuCT reduces the decomposition
time from 144.4 hours to 8.3 hours. Although QFAST can also bene-
fit from the multi-threading, it would require more than one month
to decompose an 8-qubit unitary.

7 RELATEDWORK
Fidelity modeling and optimization. Errors of NISQ devices
can be modeled by mathematical equations [25, 30] or profiled by
various experiments [3, 10, 42, 64–66]. They consider the error of
an operation or a qubit as a single value. Additional experiments
are required to characterize certain types of errors caused by gate
interactions, such as crosstalk [57] and pulse distortion [69] or
benchmark the error of a certain circuit [20]. These experiment
results are difficult to integrate into a unified prediction model.
Graph neural network [70, 82] has been developed to model circuit

12

QuCT: A Framework for AnalyzingQuantum Circuit by Extracting Contextual and Topological Features MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada

fidelity but exhibits a reduced generalization and interpretation
power due to high complexities.

Gate cancellation [54, 58] and noise-adaptive qubit mapping [37,
48] have been developed to optimize noise. Some works aim to
reduce certain types of noise, such as the crosstalk [57, 84], dephas-
ing [12], and measurement error [13, 59, 79] or optimize noise in
certain applications [1, 31]. For example, errors in variational quan-
tum circuits can be mitigated by deleting unimportant gates [49]
or distributed execution [77]. Optimization performance highly
depends on the accuracy of fidelity modeling [61].

Unitary decomposition. Unitary decomposition can be con-
ducted via some mathematical decomposition equations[34, 46, 72,
80], where [16] and [17] achieve the optimal number of gates in ar-
bitrary single-qubit and two-qubit unitaries, respectively. However,
their number of gates is extremely large when decomposing larger
unitaries [6, 46, 81]. Search-based methods are more realistic for
four to five-qubit unitaries [15, 67, 87]. With regard to the decom-
position time and the number of gates, QSEARCH [15] performs
best for three-qubit unitaries. QFAST [87] is improved based on
QSEARCH for 4 and 5-qubit unitaries. To limit the search space, [6]
uses repeat-until-success circuits for approximation. There are also
methods to handle specific unitary types [14, 43, 53, 56], such as
Clifford unitaries [26, 76] and sparse unitaries [52]. Quartz [86] and
Queso [85] are techniques that focus on decomposing parametric
unitaries to enable automatic gate transformation. To enable this
decomposition, we can construct the path table with parametric
gates, which will be the future work of QuCT.

Features extraction on a graph. Extraction of contextual and
topological features is important in the analysis of natural lan-
guage [18], graph [73], and program [60]. They extract features as
frequent sub-structures and represent them as vectors. Random
walk is applied in graph analysis [22], which puts paths as input
of natural networks. Thus, we think that it is reasonable to apply
this technique to the analysis of quantum circuits. Some studies
leverage patternmatching in analyzing quantum circuits to find sub-
circuits for cancellation [35, 54] while suffering from exponential
time complexity.

8 CONCLUSION
We propose a unified framework for analyzing quantum circuits,
which first utilizes contextual and topological information to im-
prove the accuracy and efficiency of the analysis. Our upstream
model extracts gates of circuits into vectors considering their neigh-
boring gates and their dependencies. Our downstream models take
gate vectors as input and analyze circuits for specific tasks. We
verify our framework with two representative analysis tasks. Our
circuit fidelity prediction model shows 4.2× accuracy improvement
and achieves 46.3× speedup compared to prior unitary decomposi-
tion methods.

ACKNOWLEDGMENTS
This work was supported in part by the National Natural Science
Foundation of China under Grant (No. 61825205). This work was
also funded by Zhejiang Pioneer (Jianbing) Project (No. 2023C01036).

REFERENCES
[1] Mahabubul Alam, Abdullah Ash-Saki, and Swaroop Ghosh. 2020. Circuit com-

pilation methodologies for quantum approximate optimization algorithm. In
Proceedings of the 53rd Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO). IEEE, 215–228.

[2] Gadi Aleksandrowicz, Thomas Alexander, Panagiotis Barkoutsos, Luciano Bello,
Yael Ben-Haim, David Bucher, Francisco Jose Cabrera-Hernández, Jorge Carballo-
Franquis, Adrian Chen, Chun-Fu Chen, Jerry M. Chow, Antonio D. Córcoles-
Gonzales, Abigail J. Cross, Andrew Cross, Juan Cruz-Benito, Chris Culver, Sal-
vador De La Puente González, Enrique De La Torre, Delton Ding, Eugene Du-
mitrescu, Ivan Duran, Pieter Eendebak, Mark Everitt, Ismael Faro Sertage, Al-
bert Frisch, Andreas Fuhrer, Jay Gambetta, Borja Godoy Gago, Juan Gomez-
Mosquera, Donny Greenberg, Ikko Hamamura, Vojtech Havlicek, Joe Hellmers,
Łukasz Herok, Hiroshi Horii, Shaohan Hu, Takashi Imamichi, Toshinari Itoko, Ali
Javadi-Abhari, Naoki Kanazawa, Anton Karazeev, Kevin Krsulich, Peng Liu, Yang
Luh, Yunho Maeng, Manoel Marques, Francisco Jose Martín-Fernández, Dou-
glas T. McClure, David McKay, Srujan Meesala, Antonio Mezzacapo, Nikolaj Moll,
Diego Moreda Rodríguez, Giacomo Nannicini, Paul Nation, Pauline Ollitrault,
Lee James O’Riordan, Hanhee Paik, Jesús Pérez, Anna Phan, Marco Pistoia, Viktor
Prutyanov, Max Reuter, Julia Rice, Abdón Rodríguez Davila, Raymond Harry Pu-
tra Rudy, Mingi Ryu, Ninad Sathaye, Chris Schnabel, Eddie Schoute, Kanav Setia,
Yunong Shi, Adenilton Silva, Yukio Siraichi, Seyon Sivarajah, John A. Smolin,
Mathias Soeken, Hitomi Takahashi, Ivano Tavernelli, Charles Taylor, Pete Taylour,
Kenso Trabing, Matthew Treinish, Wes Turner, Desiree Vogt-Lee, Christophe
Vuillot, Jonathan A.Wildstrom, JessicaWilson, ErickWinston, ChristopherWood,
Stephen Wood, Stefan Wörner, Ismail Yunus Akhalwaya, and Christa Zoufal.
2019. Qiskit: An Open-source Framework for Quantum Computing. (2019).

[3] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C Bardin, Rami
Barends, Rupak Biswas, Sergio Boixo, Fernando GSL Brandao, David A Buell,
Brian Burkett, Yu Chen, Zijun Chen, Ben Chiaro, Roberto Collins, Willliam Court-
ney, Andrew Dunsworth, Edward Farhi, Brooks Foxen, Austin Fowler, Craig Gid-
ney, Marissa Giustina, Rob Graff, Keith Guerin, Steve Habegger, Matthew P Har-
rigan, Michael J Hartmann, Alan Ho, Markus Hoffmann, Trent Huang, Travis S
Humble, Sergei V Isakov, Evan Jeffrey, Zhan Jiang, Dvir Kafri, Kostyantyn
Kechedzhi, Julian Kelly, Paul V Klimov, Sergey Knysh, Alexander Korotkov,
Fedor Kostritsa, David Landhuis, Mike Lindmark, Erik Lucero, Dmitry Lyakh,
Salvatore Mandra, Jarrod R McClean, Matthew McEwen, Anthony Megrant, Xiao
Mi, Kristel Michielsen, Masoud Mohseni, Josh Mutus, Ofer Naaman, Matthhew
Neeley, Charles Neil, Murphy Yuezhen Niu, Eric Ostby, Andre Petukhov, John C
Platt, Chris Quintana, Eleanor G Rieffel, Pedram Roushan, Nicholas C Rubin,
Daniel Sank, Kevin J Satzinger, Vadim Smelyanskiy, Kevin J Sung, Matthew D
Trevithick, Amit Vainsencher, Benjamin Villalonga, TheodoreWhite, Z Jamie Yao,
Ping Yeh, Adam Zalcman, Hartmut Neven, and John M Martinis. 2019. Quantum
supremacy using a programmable superconducting processor. Nature (2019),
505–510.

[4] Kerstin Beer, Dmytro Bondarenko, Terry Farrelly, Tobias J Osborne, Robert
Salzmann, Daniel Scheiermann, and Ramona Wolf. 2020. Training deep quantum
neural networks. Nature communications (2020), 808.

[5] Charles H Bennett, Ethan Bernstein, Gilles Brassard, and Umesh Vazirani. 1997.
Strengths and weaknesses of quantum computing. SIAM journal on Computing
(1997), 1510–1523.

[6] Alex Bocharov, Martin Roetteler, and Krysta M Svore. 2015. Efficient synthesis
of universal repeat-until-success quantum circuits. Physical review letters 114, 8
(2015), 080502.

[7] Leo Breiman. 2001. Random forests. Machine learning (2001), 5–32.
[8] John Chiaverini, Dietrich Leibfried, Tobias Schaetz, Murray D Barrett, RB

Blakestad, Joseph Britton, Wayne M Itano, John D Jost, Emanuel Knill, Christo-
pher Langer, R. Ozeri, and D. J. Wineland. 2004. Realization of quantum error
correction. Nature (2004), 602–605.

[9] Laura Clinton, Johannes Bausch, and Toby Cubitt. 2021. Hamiltonian simulation
algorithms for near-term quantum hardware. Nature communications (2021),
1–10.

[10] Andrew W Cross, Lev S Bishop, Sarah Sheldon, Paul D Nation, and Jay M Gam-
betta. 2019. Validating quantum computers using randomized model circuits.
Physical Review A (2019), 032328.

[11] Poulami Das, Eric Kessler, and Yunong Shi. 2023. The Imitation Game: Leveraging
CopyCats for Robust Native Gate Selection in NISQ Programs. In 2023 IEEE
International Symposium on High-Performance Computer Architecture (HPCA).
IEEE, 787–801.

[12] Poulami Das, Swamit Tannu, Siddharth Dangwal, and Moinuddin Qureshi. 2021.
Adapt: Mitigating idling errors in qubits via adaptive dynamical decoupling. In
Proceedings of the 54th Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO). 950–962.

[13] Poulami Das, Swamit Tannu, and Moinuddin Qureshi. 2021. Jigsaw: Boosting
fidelity of nisq programs via measurement subsetting. In Proceedings of the 54th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). 937–
949.

13

MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada Tan et al.

[14] Anmer Daskin and Sabre Kais. 2011. Decomposition of unitary matrices for
finding quantum circuits: application to molecular Hamiltonians. The Journal of
chemical physics (2011), 144112.

[15] Marc G Davis, Ethan Smith, Ana Tudor, Koushik Sen, Irfan Siddiqi, and Costin
Iancu. 2020. Towards optimal topology aware quantum circuit synthesis. In 2020
IEEE International Conference on Quantum Computing and Engineering (QCE).
IEEE, 223–234.

[16] Christopher M Dawson and Michael A Nielsen. 2005. The solovay-kitaev algo-
rithm. arXiv preprint quant-ph/0505030 (2005).

[17] Alexis De Vos and Stijn De Baerdemacker. 2016. Block-Z X Z synthesis of an
arbitrary quantum circuit. Physical Review A (2016), 052317.

[18] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. Pro-
ceedings of the 2021 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies (NAACL) (2018).

[19] Yongshan Ding, Pranav Gokhale, Sophia Fuhui Lin, Richard Rines, Thomas Prop-
son, and Frederic T Chong. 2020. Systematic crosstalk mitigation for super-
conducting qubits via frequency-aware compilation. In Proceedings of the 53rd
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). IEEE,
201–214.

[20] Alexander Erhard, Joel J Wallman, Lukas Postler, Michael Meth, Roman Stricker,
Esteban A Martinez, Philipp Schindler, Thomas Monz, Joseph Emerson, and
Rainer Blatt. 2019. Characterizing large-scale quantum computers via cycle
benchmarking. Nature communications (2019), 5347.

[21] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. 2014. A quantum approxi-
mate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014).

[22] Francois Fouss, Alain Pirotte, Jean-Michel Renders, and Marco Saerens. 2007.
Random-walk computation of similarities between nodes of a graph with appli-
cation to collaborative recommendation. IEEE Transactions on knowledge and
data engineering (2007), 355–369.

[23] Joel N Franklin. 2012. Matrix theory. Courier Corporation.
[24] Jay M Gambetta, Antonio D Córcoles, Seth T Merkel, Blake R Johnson, John A

Smolin, Jerry M Chow, Colm A Ryan, Chad Rigetti, Stefano Poletto, Thomas A
Ohki, et al. 2012. Characterization of addressability by simultaneous randomized
benchmarking. Physical review letters 109, 24 (2012), 240504.

[25] Konstantinos Georgopoulos, Clive Emary, and Paolo Zuliani. 2021. Modeling
and simulating the noisy behavior of near-term quantum computers. Physical
Review A (2021), 062432.

[26] Brett Giles and Peter Selinger. 2013. Exact synthesis of multiqubit Clifford+ T
circuits. Physical Review A (2013), 032332.

[27] DMGreenberger, MAHorne, and A Zeilinger. 1989. Going beyond Bell’s theorem,
in “Bell’s theorem, quantum theory, and conceptions of the universe,” M. Kafakos,
editor, Vol. 37 of. Fundamental Theories of Physics (1989).

[28] Robert Grone, Russell Merris, and VS_ Sunder. 1990. The Laplacian spectrum of
a graph. SIAM Journal on matrix analysis and applications 11, 2 (1990), 218–238.

[29] Lov K. Grover. 1996. A Fast Quantum Mechanical Algorithm for Database
Search. In Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory
of Computing (Philadelphia, Pennsylvania, USA) (STOC ’96). Association for
Computing Machinery, New York, NY, USA, 212–219. https://doi.org/10.1145/
237814.237866

[30] Mauricio Gutiérrez, Lukas Svec, Alexander Vargo, and Kenneth R Brown. 2013.
Approximation of realistic errors by Clifford channels and Pauli measurements.
Physical Review A (2013), 030302.

[31] Adam Holmes, Mohammad Reza Jokar, Ghasem Pasandi, Yongshan Ding, Mas-
soud Pedram, and Frederic T Chong. 2020. NISQ+: Boosting quantum computing
power by approximating quantum error correction. In 2020 ACM/IEEE 47th An-
nual International Symposium on Computer Architecture (ISCA). IEEE, 556–569.

[32] Sihao Huang, Benjamin Lienhard, Greg Calusine, Antti Vepsäläinen, Jochen
Braumüller, David K Kim, Alexander J Melville, Bethany M Niedzielski, Jonilyn L
Yoder, Bharath Kannan, et al. 2021. Microwave package design for superconduct-
ing quantum processors. PRX Quantum 2, 2 (2021), 020306.

[33] Sergei V Isakov, Dvir Kafri, Orion Martin, Catherine Vollgraff Heidweiller, Wo-
jciech Mruczkiewicz, Matthew P Harrigan, Nicholas C Rubin, Ross Thomson,
Michael Broughton, Kevin Kissell, Peters Evan, Gustafson Erik, Andy C. Y. Li,
Henry Lamm, Gabriel Perdue, Alan K. Ho, Doug Strain, and Sergio Boixo. 2021.
Simulations of quantum circuits with approximate noise using qsim and cirq.
arXiv preprint arXiv:2111.02396 (2021).

[34] Raban Iten, Roger Colbeck, Ivan Kukuljan, Jonathan Home, and Matthias Chris-
tandl. 2016. Quantum circuits for isometries. Physical Review A (2016), 032318.

[35] Raban Iten, Romain Moyard, Tony Metger, David Sutter, and Stefan Woerner.
2022. Exact and practical pattern matching for quantum circuit optimization.
ACM Transactions on Quantum Computing (2022), 1–41.

[36] Mohsen Jamali and Martin Ester. 2009. Trustwalker: a random walk model for
combining trust-based and item-based recommendation. In Proceedings of the
15th ACM SIGKDD international conference on Knowledge discovery and data
mining. 397–406.

[37] Ali JavadiAbhari, Shruti Patil, Daniel Kudrow, JeffHeckey, Alexey Lvov, Frederic T
Chong, and Margaret Martonosi. 2014. ScaffCC: A framework for compilation

and analysis of quantum computing programs. In Proceedings of the 11th ACM
Conference on Computing Frontiers. 1–10.

[38] Julian Kelly, Peter O’Malley, Matthew Neeley, Hartmut Neven, and John M Mar-
tinis. 2018. Physical qubit calibration on a directed acyclic graph. arXiv preprint
arXiv:1803.03226 (2018).

[39] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[40] Martin Kliesch and Ingo Roth. 2021. Theory of quantum system certification.
PRX quantum (2021), 010201.

[41] Paul V Klimov, Julian Kelly, JohnMMartinis, andHartmut Neven. 2020. The snake
optimizer for learning quantum processor control parameters. arXiv preprint
arXiv:2006.04594 (2020).

[42] Emanuel Knill, Dietrich Leibfried, Rolf Reichle, Joe Britton, R Brad Blakestad,
John D Jost, Chris Langer, Roee Ozeri, Signe Seidelin, and David J Wineland. 2008.
Randomized benchmarking of quantum gates. Physical Review A (2008), 012307.

[43] Efekan Kökcü, Thomas Steckmann, YanWang, JK Freericks, Eugene F Dumitrescu,
and Alexander F Kemper. 2022. Fixed depth Hamiltonian simulation via Cartan
decomposition. Physical Review Letters (2022), 070501.

[44] Risi Kondor and Horace Pan. 2016. The multiscale laplacian graph kernel. Ad-
vances in neural information processing systems (2016).

[45] Philip Krantz, Morten Kjaergaard, Fei Yan, Terry P Orlando, Simon Gustavsson,
and William D Oliver. 2019. A quantum engineer’s guide to superconducting
qubits. Applied Physics Reviews (2019), 021318.

[46] Anna M Krol, Aritra Sarkar, Imran Ashraf, Zaid Al-Ars, and Koen Bertels. 2022.
Efficient decomposition of unitary matrices in quantum circuit compilers. Applied
Sciences (2022), 759.

[47] Ni Lao, Tom Mitchell, and William W. Cohen. 2011. Random walk inference and
learning in a large scale knowledge base. In Proceedings of the 2011 conference on
empirical methods in natural language processing. 529–539.

[48] Gushu Li, Yufei Ding, and Yuan Xie. 2019. Tackling the qubit mapping problem
for NISQ-era quantum devices. In Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS’19). 1001–1014.

[49] Gushu Li, Yunong Shi, and Ali Javadi-Abhari. 2021. Software-hardware co-
optimization for computational chemistry on superconducting quantum pro-
cessors. In 2021 ACM/IEEE 48th Annual International Symposium on Computer
Architecture (ISCA). IEEE, 832–845.

[50] Seth Lloyd and Christian Weedbrook. 2018. Quantum Generative Adversarial
Learning. Physical Review Letters (2018), 040502.1–040502.5.

[51] Shunlong Luo and Qiang Zhang. 2004. Informational distance on quantum-state
space. Physical Review A (2004), 032106.

[52] Emanuel Malvetti, Raban Iten, and Roger Colbeck. 2021. Quantum circuits for
sparse isometries. Quantum (2021), 412.

[53] Esteban A Martinez, Thomas Monz, Daniel Nigg, Philipp Schindler, and Rainer
Blatt. 2016. Compiling quantum algorithms for architectures with multi-qubit
gates. New Journal of Physics (2016), 063029.

[54] Dmitri Maslov, Gerhard W Dueck, D Michael Miller, and Camille Negrevergne.
2008. Quantum circuit simplification and level compaction. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems (2008), 436–444.

[55] Abtin Molavi, Amanda Xu, Martin Diges, Lauren Pick, Swamit Tannu, and Aws
Albarghouthi. 2022. Qubit Mapping and Routing via MaxSAT. In Proceedings of
the 55th IEEE/ACM International Symposium on Microarchitecture (MICRO). IEEE,
1078–1091.

[56] Mikko Möttönen, Juha J Vartiainen, Ville Bergholm, and Martti M Salomaa. 2004.
Quantum circuits for general multiqubit gates. Physical Review Letters (2004),
130502.

[57] PrakashMurali, David CMcKay, Margaret Martonosi, and Ali Javadi-Abhari. 2020.
Software mitigation of crosstalk on noisy intermediate-scale quantum computers.
In Proceedings of the Twenty-Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS’20). 1001–1016.

[58] Yunseong Nam, Neil J Ross, Yuan Su, Andrew M Childs, and Dmitri Maslov. 2018.
Automated optimization of large quantum circuits with continuous parameters.
npj Quantum Information (2018), 1–12.

[59] Paul D Nation, Hwajung Kang, Neereja Sundaresan, and Jay M Gambetta. 2021.
Scalable mitigation of measurement errors on quantum computers. PRX Quantum
2, 4 (2021), 040326.

[60] Chris Parnin and Alessandro Orso. 2011. Are automated debugging techniques
actually helping programmers?. In Proceedings of the 2011 international symposium
on software testing and analysis. 199–209.

[61] Tirthak Patel, Baolin Li, Rohan Basu Roy, and Devesh Tiwari. 2020. UREQA:
Leveraging Operation-Aware Error Rates for Effective Quantum Circuit Mapping
on NISQ-Era Quantum Computers. In 2020 USENIX Annual Technical Conference
(ATC). 705–711.

[62] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos, David Cournapeau,
Matthieu Brucher, Matthieu Perrot, and Edouard Duchesnay. 2011. Scikit-learn:
Machine learning in Python. the Journal of machine Learning research (2011),

14

https://doi.org/10.1145/237814.237866
https://doi.org/10.1145/237814.237866

QuCT: A Framework for AnalyzingQuantum Circuit by Extracting Contextual and Topological Features MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada

2825–2830.
[63] John Preskill. 2018. Quantum computing in the NISQ era and beyond. Quantum

(2018), 79.
[64] Timothy Proctor, Kenneth Rudinger, Kevin Young, Erik Nielsen, and Robin Blume-

Kohout. 2022. Measuring the capabilities of quantum computers. Nature Physics
(2022), 75–79.

[65] Timothy Proctor, Stefan Seritan, Kenneth Rudinger, Erik Nielsen, Robin Blume-
Kohout, and Kevin Young. 2022. Scalable randomized benchmarking of quantum
computers using mirror circuits. Physical Review Letters (2022), 150502.

[66] HT Quan, Zhi Song, Xu F Liu, Paolo Zanardi, and Chang-Pu Sun. 2006. Decay of
Loschmidt echo enhanced by quantum criticality. Physical Review Letters (2006),
140604.

[67] Péter Rakyta and Zoltán Zimborás. 2022. Approaching the theoretical limit in
quantum gate decomposition. Quantum 6 (2022), 710.

[68] P. Rebentrost, M. Mohseni, and S. Lloyd. 2013. Quantum support vector machine
for big feature and big data classification. Physical Review Letters (2013), 130503.

[69] Michiel A Rol, Livio Ciorciaro, Filip K Malinowski, Brian M Tarasinski, Ramiro E
Sagastizabal, Cornelis Christiaan Bultink, Yves Salathe, Niels Haandbæk, Jan Se-
divy, and Leonardo DiCarlo. 2020. Time-domain characterization and correction
of on-chip distortion of control pulses in a quantum processor. Applied Physics
Letters (2020), 054001.

[70] Vedika Saravanan and Samah M Saeed. 2022. Data-driven reliability models of
quantum circuit: From traditional ml to graph neural network. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems (2022).

[71] Mohan Sarovar, Timothy Proctor, Kenneth Rudinger, Kevin Young, Erik Nielsen,
and Robin Blume-Kohout. 2020. Detecting crosstalk errors in quantum informa-
tion processors. Quantum 4 (2020), 321.

[72] Vivek V Shende, Stephen S Bullock, and Igor L Markov. 2005. Synthesis of
quantum logic circuits. In Proceedings of the 2005 Asia and South Pacific Design
Automation Conference. 272–275.

[73] Nino Shervashidze, SVN Vishwanathan, Tobias Petri, Kurt Mehlhorn, and Karsten
Borgwardt. 2009. Efficient graphlet kernels for large graph comparison. In
Artificial intelligence and statistics. 488–495.

[74] Peter W Shor. 1994. Algorithms for quantum computation: discrete logarithms
and factoring. In Proceedings 35th annual symposium on foundations of computer
science. IEEE, 124–134.

[75] Kaitlin N Smith and Mitchell A Thornton. 2019. A quantum computational
compiler and design tool for technology-specific targets. In Proceedings of the
46th International Symposium on Computer Architecture. 579–588.

[76] Mathias Soeken, D Michael Miller, and Rolf Drechsler. 2013. Quantum circuits
employing roots of the Pauli matrices. Physical Review A (2013), 042322.

[77] Samuel Stein, Nathan Wiebe, Yufei Ding, Peng Bo, Karol Kowalski, Nathan Baker,
James Ang, and Ang Li. 2022. EQC: ensembled quantum computing for variational
quantum algorithms. In Proceedings of the 49th Annual International Symposium
on Computer Architecture (ISCA). 59–71.

[78] Brian D Sutton. 2009. Computing the complete CS decomposition. Numerical
Algorithms (2009), 33–65.

[79] Swamit S Tannu and Moinuddin K Qureshi. 2019. Mitigating measurement errors
in quantum computers by exploiting state-dependent bias. In Proceedings of the
52nd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).
279–290.

[80] Robert R Tucci. 1998. A rudimentary quantum compiler. arXiv preprint quant-
ph/9805015 (1998).

[81] Juha J Vartiainen, Mikko Möttönen, and Martti M Salomaa. 2004. Efficient
decomposition of quantum gates. Physical Review Letters (2004), 177902.

[82] Hanrui Wang, Pengyu Liu, Jinglei Cheng, Zhiding Liang, Jiaqi Gu, Zirui Li, Yong-
shan Ding, Weiwen Jiang, Yiyu Shi, Xuehai Qian, et al. 2022. Graph Transformer
for Quantum Circuit Reliability Prediction. (2022), 1–9.

[83] Tianyi Wang, Yang Chen, Zengbin Zhang, Tianyin Xu, Long Jin, Pan Hui, Beixing
Deng, and Xing Li. 2011. Understanding graph sampling algorithms for social
network analysis. In 2011 31st international conference on distributed computing
systems workshops. IEEE, 123–128.

[84] Lei Xie, Jidong Zhai, ZhenXing Zhang, Jonathan Allcock, Shengyu Zhang, and
Yi-Cong Zheng. 2022. Suppressing ZZ crosstalk of Quantum computers through
pulse and scheduling co-optimization. In Proceedings of the 27th ACM International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS’22). 499–513.

[85] Amanda Xu, Abtin Molavi, Lauren Pick, Swamit Tannu, and Aws Albarghouthi.
2023. Synthesizing Quantum-Circuit Optimizers. Proceedings of the ACM on
Programming Languages 7, PLDI (2023), 835–859.

[86] Mingkuan Xu, Zikun Li, Oded Padon, Sina Lin, Jessica Pointing, Auguste Hirth,
Henry Ma, Jens Palsberg, Alex Aiken, Umut A Acar, et al. 2022. Quartz: su-
peroptimization of quantum circuits. In Proceedings of the 43rd ACM SIGPLAN
International Conference on Programming Language Design and Implementation.
625–640.

[87] Ed Younis, Koushik Sen, Katherine Yelick, and Costin Iancu. 2021. Qfast: Conflat-
ing search and numerical optimization for scalable quantum circuit synthesis.
In 2021 IEEE International Conference on Quantum Computing and Engineering

(QCE). IEEE, 232–243.

Received April 28 2023; accepted July 24 2023

15

	Abstract
	1 Introduction
	2 Background
	2.1 Quantum Circuit
	2.2 Quantum Circuit Analysis
	2.3 Motivational Examples

	3 Upstream Model: Gate Vectorization
	3.1 Vectorization
	3.2 The Size of Path Table
	3.3 Expressivity

	4 Downstream Model 1: Circuit Fidelity Prediction And Optimization
	4.1 Fidelity Prediction
	4.2 Fidelity Optimization

	5 Downstream Model 2: Unitary Decomposition
	5.1 Unitary-to-Vector Model
	5.2 QuCT Decomposition Flow

	6 Evaluation
	6.1 Methodology
	6.2 Fidelity Prediction
	6.3 Fidelity Optimization
	6.4 Unitary Decomposition

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

