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Abstract—Propositional satisfiability problem (SAT) is rep-
resented in a conjunctive normal form with multiple clauses,
which is an important non-deterministic polynomial-time (NP)
complete problem that plays a major role in various applications
including artificial intelligence, graph colouring, and circuit
analysis. Quantum annealing (QA) is a promising methodology
for solving complex SAT problems by exploiting the parallelism of
quantum entanglement, where the SAT variables are embedded
to the qubits. However, the long embedding time fundamentally
limits existing QA-based methods, leading to inefficient hardware
implementation and poor scalability.

In this paper, we propose HyQSAT, a hybrid approach that
integrates QA with the classical Conflict-Driven Clause Learning
(CDCL) algorithm to enable end-to-end acceleration for solving
SAT problems. Instead of embedding all clauses to QA hardware,
we quantitatively estimate the conflict frequency of clauses and
apply breadth-first traversal to choose their embedding order. We
also consider the hardware topology to maximize the utilization
of physical qubits in embedding to QA hardware. Besides, we
adjust the embedding coefficients to improve the computation
accuracy under qubit noise. Finally, we present how to interpret
the satisfaction probability based on QA energy distribution and
use this information to guide the CDCL search. Our experiments
demonstrate that HyQSAT can effectively support larger-scale
SAT problems that are beyond the capability of existing QA
approaches, achieve up to 12.62X end-to-end speedup using D-
Wave 2000Q compared to the classic CDCL algorithm on Intel ES
CPU, and considerably reduce the QA embedding time from 17.2s
to 15.7us compared to the D-Wave Minorminer algorithm [11].

I. INTRODUCTION

A propositional satisfiability (SAT) problem is to find an
assignment for each variable to satisfy a given Boolean for-
mula. A typical SAT problem is composed of multiple clauses
represented as a disjunction of Boolean variables. 3-SAT
problem is a special case of the SAT problem that has no more
than three variables in each clause. It is a fundamental problem
in various applications, including artificial intelligence [16],
circuit analysis [81], protein structure prediction [55] and
computer security [69]. Since the 3-SAT problem is an NP-
complete problem [1], the time complexity of classical algo-
rithms increases exponentially with the numbers of clauses
and variables [20].

Among various classical SAT algorithms [42], [48], [79],
the conflict-driven clause learning (CDCL) algorithm is cur-
rently the state-of-the-art approach for large-scale SAT prob-
lems [43]. It performs tree-like searching and propagation
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Fig. 1. End-to-end time to solve a 3-SAT problem using different approaches.
The 3-SAT problem contains 128 variables and 150 clauses.

with a strategy to memorize the conflict [43]. It solves the
problem at around 8000us over an M1 CPU (Figure 1). The
CDCL computational time depends mainly on the warm-up
stage [26], [68], where CDCL randomly searches the space
without an efficient method to guide the exploration. Heuristics
of CDCL also require learning the potential assignments of
variables through searching [12], [25], [43], [49], which is
time-consuming at the beginning.

There are designs that leverage the parallelism of GPU [57],
[61] or FPGA [31], [80] to accelerate the searching. However,
solving a SAT problem is an iterative process where the next
iteration depends on the previous one, which limits the overall
speedup for these data-parallel-based architectures. Quantum
computing offers an alternative to solve 3-SAT problems
by providing exponential quantum speedup through qubit
entanglement [7]. Quantum annealing (QA) has the theoretical
advantage of low time complexity and high convergence speed
compared to the state-of-the-art classical algorithm [5]. It
solves the 3-SAT problem by encoding it into a minimization
problem and considers the stabilized state as the solution [78].
Quantum annealer (QA hardware) is a specialized quantum
computer to execute QA, which includes D-Wave 2000Q [47]
and D-Wave Advantage [46], etc. It accommodates a relatively
large number of physical qubits (~2000 qubits) compared to
a gate-based quantum computer (~100 qubits). For example,
both Grover algorithm [30] and Variational Quantum Eigen-
solver (VQE) [60] can be used to solve 3-SAT problems. They
can only be implemented on a gate-based quantum computer,
restricting their scope to small-scale problems.

Existing QA-based approaches suffer from long embedding
time to map variables to physical qubits, resulting in inefficient
hardware implementation and poor scalability [7], [8]. The



embedding process takes about 10s using the state-of-the-art
scheme of D-Wave Minorminer [11] (Figure 1), where iterative
routing and adjustment steps tend to be time consuming [71].
The routing needs to calculate the shortest path between
physical qubits allocated to the same variable. The adjustment
that aims to embed all clauses into hardware is usually tedious.
A complex embedding process hinders QA from handling
large-scale 3-SAT problems, e.g., it is difficult for D-Wave
2000Q to solve the problem with 128 variables and 200 clauses
according to our test.

The noise involved in the QA hardware inevitably brings
inaccurate results, leading to more sampling time to improve
accuracy. Theoretically, the noise comes from the environ-
ment [24], crosstalk [53], [75] and readout [22], which de-
crease the probability of finding the solution when solving
SAT problems. To reduce noise overhead, it requires accessing
multiple samples to maintain the high probability of getting
correct results [73], e.g., local searching [65], or majority
voting [63], which incurs additional time. Figure 1 shows
that it requires (10 + 110)us x 60 4+ 20us x 59 = 8380us
access time to execute 60 samples with a 20us delay between
two samples. Furthermore, we observe that for the problems
with 128 variables and 200 clauses, the probability of getting
correct results by D-Wave 2000Q is usually close to zero.

To overcome these challenges, we propose HyQSAT, a
hybrid approach to enable end-to-end acceleration for tackling
large-scale SAT problems, which leverages both advantages
of QA and CDCL. We observe that the warm-up time of
CDCL depends on the conflict frequency of clauses, while the
embedding time of QA increases with the number of clauses.
To overcome these limitations, HyQSAT tries to identify a
subset of the clauses that are hard to solve by CDCL while
being friendly to QA hardware. HyQSAT iteratively sends part
of the clauses to QA hardware and interprets the QA results
to accelerate the CDCL search. Our method requires 4000 us
only to solve the problem with an embedding time smaller than
164 (see Figure 1). The speedup can be further improved for
a larger problem scale.

To bridge the computational paradigm gap between quantum
computing and classical computing, HyQSAT includes a fron-
tend and a backend for the integration of QA and CDCL. The
purpose of the frontend is to find “hard” clauses and embed
them into QA hardware. We generate a clause queue according
to their conflict frequency and embed the clause in order
until the QA hardware is fully utilized. Since we do not need
to embed all clauses, our embedding eliminates the iterative
adjustment and routing, achieving linear time complexity of
the number of clauses. When allocating variables to physical
qubits, we also consider the physical qubits topology of QA
hardware, which reduces the routing time of embedding. To
mitigate noise overhead and improve computation accuracy,
we propose to adjust the coefficient of the QA objective
function. The backend reads the QA output and uses it to
guide the CDCL search. Based on the energy distribution
of QA hardware, we divide four types of clause satisfaction
probability via a Gaussian Naive Bayes model. We then adopt

different search strategies to prune the CDCL search space for
different satisfaction probabilities, which significantly reduces
the total number of iterations required to find the solution.

The contributions can be summarized as follows:

e We propose HyQSAT, a hybrid quantum-classical ap-
proach, which is the first work that realizes an end-to-end
quantum speedup for solving SAT problems.

o We design the frontend and backend of HyQSAT to inte-
grate QA with CDCL seamlessly. Our frontend effectively
reduces the embedding time, while our backend improves
the search efficiency of CDCL.

o We propose multiple noise optimization techniques for
modern noisy intermediate-scale quantum (NISQ) de-
vices, including a coefficient adjustment to increase the
energy gap and a confidence interval partition to classify
satisfaction probability.

Experiments show that HyQSAT can handle various large-
scale SAT problems on 14 benchmarks from 7 different
domains. It reduces 86.83% of the number of search iterations
and achieves up to 12.62X end-to-end speedup using D-Wave
2000Q compared to classic CDCL on an Intel E5 CPU.
Compared to the state-of-the-art D-Wave Minorminer [11],
HyQSAT considerably reduces the QA embedding time from
17.2s to 15.7us.

II. BACKGROUND
A. 3-SAT problem

The 3-SAT problem consists of determining whether an
assignment that satisfies a given Boolean formula exists. The
formula is satisfiable if a correct assignment can be found. For
the sake of simplicity, the value 1 will refer to true and O to
false in the following sections. Generally, a Boolean formula
C is represented in a conjunctive normal form with multiple
clauses ci. Each clause is a disjunction of Boolean variables
X ={x1,...,z,},

C=ciNca...,Cm—1N\Cnm

1
ck =0 VIaVlis liz{x_h_‘xj}v M

where [; is the literal that can choose x; or its inverse —z; (not
x;). Each clause has no more than three Boolean variables.
Figure 2 (a) illustrates a 3-SAT problem, which contains
two clauses c1, co, and four Boolean variables 1, x2, X3, 4.
Each clause takes three variables as input. The solution
r1 = 29 = 0,z3 = x4 = 1 (Figure 2 (f)) satisfies ci,
co and C. The solving time of the 3-SAT problem grows
exponentially with the number of clauses m and the number
of variables n. A nontrivial up bound of the time complexity

is O(m22n—2vn/legzny 2],

B. CDCL Algorithm

The state-of-the-art classical SAT algorithm is CDCL. It
performs a tree-like searching (Figure 2 (b)). Given a 3-SAT
problem, an iteration of the searching consists of three steps:
a) Decision. A variable is picked and assigned with 1 or 0
value (e.g. z1 = 0, xo = 0), where many heuristics are

HyQSAT is publicly available on https://github.com/JanusQ/HyQSAT.
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Fig. 2. Solving a 3-SAT problem using CDCL and QA. (a) The input SAT problem; (b) the CDCL algorithm that includes iterative decision, propagation,
and conflict resolving steps; (c) the objective function for QA minimization; (e) the problem graph of the objective function; (e) the embedding results on

QA hardware topology; (f) the final solution.

proposed [25], [49] b) Propagation. When a clause has only
one unassigned variable, this variable is deduced to satisfy this
clause. For example, after x; and x, are assigned 0, x3 = 1 is
deduced to satisfy ¢c; = x1 Va2 V x3. ¢) Conflict Resolving. If
an unsatisfied clause has no unassigned variable (e.g. ca =0
after x4 is assigned 0), conflict arises. The decision history
is memorized using the Davis-Putnam resolution [23], [43] to
avoid repeated conflicts. The solver will then backtrack to the
former step.

Warm up-stage. A key advantage of CDCL is that it
memorizes the conflict to prune the search space. Many
heuristics [25], [49] guide the search by learning from previous
conflict clauses. For example, VSIDS [49] achieved around 4X
speedup compared to the random search method. However,
the learning mechanism works poorly at the beginning and
has to randomly search for several iterations since there are
not enough conflict clauses to learn. Recent works proposed
a warm-up stage that searches the first few iterations using
local search [12], deep learning [38], and look-ahead mech-
anism [32]. However, they show limited improvement due to
the high complexity of the extra computation, e.g., inference
of the deep learning model.

C. Quantum Annealing Algorithm

QA can find the global minimum of a two-degree objective
function, which has O(e ) [51] time complexity compared
to the O(e”) time complexity of classical algorithms. Current
QAs solve a 3-SAT problem C' by encoding it into a mini-
mization problem as follows:

argmm HC(X)—I+ZB xl—l—z Z Jijxixy, ?2)
i=1 i=1j=i+1

where I, B;, J; ; represents the intercept, the coefficient of
a one-order item, and the coefficient of a two-order item,
respectively. When min Ho = 0, problem C is satisfiable,
with the assignments of min H¢ corresponding to the problem

solution. When min Hc>0, problem C' is unsatisfiable.
Mathematically, any 3-SAT problem can be encoded into
Equation 2, where each clause is decomposed into two sub-
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clauses by introducing an auxiliary variable. For example,
clause cj, in Equation 1 is decomposed into

Ck,1 = Qg £ (ll V l2) 3)

Ck,2 = I3V ar,

where <> refers to the logical equality. It means that if ay
equals [1 Vlg, ¢ 1 is satisfied. Each sub-clause is then encoded
into a two-degree objective function as follows:

Hey , (ak, w1, 22) = a + Hyy (z1) + Hi, (z2) — 24, Hyy (1)
= 2ay Hy, (x2) + Hy (w1) Hiy (22) “)
Hey ,(ag,23) =1 — ap — Hiy(w3) + ap Hiy (v3),

where Hj,(z;) = x; for [; = x; and Hy,(x;) = 1 — a; for
l; = —x;. Sub-clause ¢y ; is satisfiable if the global minimum
of its objective function min H., . is 0. The overall objective
function of the 3-SAT problem is formulated as the sum of all
sub-clauses, as follows:

m

Z(O‘k,lHCkJ(Xv A) +ak,2Hck,2(X»A))7 ©)
k=1

Ho(X,A) =

where ay, 1 >0 or ay, 2>0 is the coefficient of each sub-clause
and A is the set with all the auxiliary variables introduced.
Figure 2 (c) illustrates the objective function of the problem
in Figure 2 (a).



D. Real-world QA Hardware

The QA algorithm can be implemented in a real physical
quantum system (described in the Ising model [45]). The
objective function of the minimization problem is represented
as a problem graph (Figure 2 (d)), where each vertex is a
variable or auxiliary variable, and two vertices are connected
if they have a non-zero quadratic coefficient. The coefficients
B; and J; ; correspond to the weights of the vertices and
edges, respectively. This problem graph is then embedded
in the hardware graph, as shown in Figure 2 (e). The em-
bedding aims to find a mapping from each vertex of the
problem graph to several physical qubits (qubits) to enable
the implementation of a non-zero quadratic coefficient on
the QA chip topology. This paper defines qubit chain as the
qubits that are connected to represent the same variable or
auxiliary variable. Figure 2 (e) shows that two qubits are
used as a qubit chain for variable x;. In addition to the
embedding step, there is a normalization step aiming at scaling
the weights of vertex (B;) and edge (J; ;) to target ranges,
where B; € [—2,2], JiJ‘ S [—1, 1].

In this work, we use D-Wave 2000Q QA topology, which
is one of the most popular QA chips [47]. This topology is
represented as a Chimera hardware graph with 2048 qubits
in a 16 x 16 grid cell ( Figure 3). Each cell contains 8
qubits (vertices) with two types of qubits: @ 4 horizontal
qubits (e.g. ¢p) that are located on the horizontal lines; @ 4
vertical qubits (e.g. ¢2) that are positioned on the vertical lines.
Each horizontal (vertical) qubit is connected with the other 4
vertical (horizontal) qubits via 4 diagonal edges, which refer
to couplers in QA hardware.

III. HYQSAT OVERVIEW

To seamlessly integrate QA with CDCL, HyQSAT over-
comes the following challenges:

o The solving time of CDCL is bounded by the clauses that
are difficult to solve in the warm-up stage. It is important
to identify these hard clauses and deploy them to QA.
During deployment, QA hardware also features a specific
topology, which restricts the mapping from variables to
qubits.

o Modern NISQ computers always involve hardware noise,
which may change the final value of each qubit. To
avoid redundant sampling time and improve computation
accuracy, we need to optimize the noise without executing
multiple samples iteratively.

o The information from QA hardware cannot be directly
used to determine the satisfaction due to noise. This
requires the development of an interpretation mechanism
to guide the CDCL search using QA results.

Assuming the total number of iterations is K for classic
CDCL (estimated based on the numbers of variables and
clauses), we empirically consider the first v/K iterations as
the warm-up stage, where we employed QA on these VK
iterations to guide the CDCL search, with the remaining
iterations applied in classic CDCL. By solving hard clauses in
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QA, the number of remaining iterations can be considerably
reduced.

Figure 4 describes the overall workflow. HyQSAT features
a cross-iterative process, where the CDCL algorithm leverages
the interpretation results of QA to guide the search and
sends new clauses to the QA hardware for acceleration. The
frontend receives unsatisfied clauses from the decision step
and finds hard clauses that need to be deployed to the QA
hardware. We perform a breadth-first traversal to generate a
clause queue, where the head clauses have higher priority to
be accelerated by QA. We then embed the clauses following
the order to the QA hardware under topology constraints. Our
embedding scheme effectively eliminates the time-consuming
routing and adjustment, which reduces the embedding time to
linear complexity. To minimize noise overhead, we also adjust
the coefficients in the QA objective function.

The frontend generates the embedding configuration with
normalized coefficients and sends them to the QA hardware
for acceleration. QA only needs to execute one sample rather
than multiple samples as errors can be resolved during the next
CDCL conflict resolving. The backend reads the outputs, e.g.,
energy, and variable state, to guide the CDCL exploration.
In the backend, we estimate the satisfaction probability of
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the embedded clauses and adapt several feedback strategies.
Similar to classic CDCL, HyQSAT follows propagation and
conflict resolving steps. If all clauses are satisfied, HyQSAT
outputs ‘“satisfiable”, or it tries to resolve the conflict and
returns to the decision step. In a word, HyQSAT algorithm
takes advantage of both quantum computing and classical
computing.

IV. FRONTEND: FROM CDCL 1O QA

The embedding process of existing QA approaches can be
time-consuming or even fail due to limited qubits and couplers.
To minimize the embedding time, we choose to only embed a
part of the clauses to QA hardware, which are hard to solve by
CDCL. In Section IV-A, we propose to generate a clause queue
that helps identify clauses with the following features: a) The
satisfaction solution of the clauses is hard to find by classic
CDCL. In contrast, it has a preference for the QA algorithm;
b) When embedding to hardware, the clauses are compatible
under the hardware graph topology, which can utilize a large
proportion of the qubits and couplers.

After generating the clause queue, we deploy the clauses
to QA hardware, following the queue order (Section IV-B).
When mapping variables to qubits, we try to maximize the
locality of variables and maintain a relatively short qubit chain
to improve qubit utilization. Finally, Section IV-C introduces
our optimization technique to reduce hardware noise overhead.

A. Clause Queue Generation

In general, the search time of CDCL is determined by how
many times a clause is visited. Figure 5 evaluates the number
of times that clauses are visited during the entire CDCL
search. Here the top 1/5 clauses are visited in 42% iterations,
which are decomposed into 33% in propagation and 9% in
conflict resolving. Some clauses are visited in more than 50%
of the iterations. We also observe that the propagation time
and the conflict resolving time are positively correlated. By
deploying the frequently-visited clauses to QA hardware, we
can effectively reduce the overall search time.

We start the clause queue generation by quantitatively eval-
uating how frequently a clause is visited. Since the repeated
visiting comes from the conflicts, we maintain an activity
score for each clause, which measures the conflict frequency
during the search. The activity score is set to 1 initially.
When resolving a conflict clause, the search is backtracked

to a predecessor variable assignment. The activity score of
the involved clauses in the backtrack increases by a constant.
Figure 6 (a) illustrates an example where x; and x5 are both
assigned with 0 in two decision steps. To make 1 A 22 A x3
equal to 1, x3 is deduced as 1. After x4 is also assigned, a
conflict arises as xo V —x3 V x4 is unsatisfied, which needs
to backtrack to the assignment of x5. Such conflict changes
the activity score of the involved clauses, where both scores
associated with 1 V z2 V 23 and z2 V —x3 V x4 increase by 1.

To build the queue, we randomly select one clause from
the clauses with top-30 activity scores as the queue head. A
random selection avoids deploying the same clauses in the
queue when there is no updating of scores. After the selection,
the clause queue is generated via breadth-first traversal. We
sequentially push the clauses that share the same variable
with the current clause, which maximizes the variable locality
when embedding to hardware. Once all the variables of the
current clause are visited, the process explores the next clause
in the queue. The traversal ends until the queue size exceeds
a threshold that is determined by the embedding capacity of
QA hardware. As illustrated in Figure 6 (b), a queue starts
with the clause z1 V x5 V 3. The clauses z; V —x5 V 27 and
—x1 V g that also share z; are visited and pushed into the
queue. Then, the traversal pushes the clauses that share x5, z3.
After the variables of the clause x1 V x2 V x3 are completed,
the traversal goes to the next clause x1 V —x5 V x7.

The clause queue aims to improve search efficiency while
keeping it hardware-friendly. In each iteration of CDCL, QA
accelerates the clauses from the current queue (the capacity
of QA is around 170 clauses), where the top-30 clauses are
dynamically updated when conflict arises. By doing so, we
can easily maintain the queue without thoroughly visiting
all clauses. Since we maximize the variable locality during
the queue generation, the utilization of qubits is improved
when mapping adjacent clauses to the hardware graph. In
other words, the couplers of the hardware graph will be
efficiently reused to enable the connection between variables.
For example, by adjacently embedding the first three clauses,
we can reuse the qubits of x; (Figure 6 (b)).

B. Hardware Embedding

The clauses in the queue are embedded in the QA hardware
graph, which allocates each variable to a qubit chain to match
the problem graph. For a variable, we define that its chain is
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composed of multiple qubits that are connected via a vertical
line and a horizontal line. For the sake of simplicity, we only
consider left-to-right connections when connecting qubits of
two variables. Figure 7 (Step 2, t = 0) shows the qubit chain
of variable z;, which consists of three qubits with one on
the vertical line and two on the horizontal line. Here, z;
is physically connected to x9,xs5,2¢ via a Chimera graph
topology (red lines). For auxiliary variables, we limit their
allocation to horizontal lines, which allows for allocating more
variables to vertical lines. Figure 7 (Step 2, t = 1) shows that
the auxiliary variable as is allocated to a qubit in the horizontal
line on the bottom, where it is connected to xg, x11, and x13.

To reduce computation overhead and maximize hardware
utilization, we propose an embedding scheme in two steps,
following the allocation rules mentioned above. This scheme
focuses on the Chimera topology of the hardware graph, e.g.,
D-Wave 2000Q, where each cell is located on 4 horizontal
lines and 4 vertical lines. In step 1, we pop clauses from
the clause queue and allocate variables to the vertical lines
according to their order in the queue. Then, we define a
connection requirement list (CRL) to record the connection
requirements of qubit chains during the embedding. A con-
nection requirement is represented as x; : {z;,...xy}, which
means that the qubit chain of variable x; is required to
connect to the qubit chains of variables {z;,...xzx}. CRL is
updated after a clause is popped according to its objective
function. After all vertical lines are used, step 2 aims to
meet the requirement in CRL by allocating variables to the
qubits in horizontal lines. The allocation starts with the bottom
horizontal line from left to right and builds the connection
with vertical lines via the diagonal coupler. Concretely, we
adopt a greedy method that always tends to maximize the
utilization of qubits of each horizontal line by allowing out-of-
order allocation of variables. Similarly, when one horizontal
line is fully utilized, the embedding process goes to the next
horizontal line until CRL is empty.

Figure 7 shows an illustrative flow example. In step 1, we
pop clauses and allocate their variables to vertical lines. The
first clause popped is x1 V x2 V x3. Its three variables are
allocated to the first three vertical lines. Based on the problem
graph of the clause, CRL is x1 : {x2} and a; : {21, 22,23}.
When popping the second clause, CRL is updated with z; :
{za,25} and as : {x5,2z7}. The popping continues until 12
variables are allocated to all 12 vertical lines. In step 2, the
embedding starts from the left-most qubit x;. For x1, its CRL
is @1 : {z2, x5, x6}. Thus, we allocate x; to the qubit chain
with three qubits to build the connection with {x5, x5, 26 }. In't
= 1, since the left two qubits are used by x1, to fully utilize the
bottom horizontal line, our greedy method allocates auxiliary
variable as to the last qubit in the bottom horizontal line to
meet as : {x9,z11,213} (Requirements of a; and ay cannot
be satisfied by this qubit). Since the bottom horizontal line is
fulfilled, the allocation of a; moves to the second horizontal
line (t = 2).

Comparing to previous embedding schemes. Assuming
the qubit number is NN,, and the number of nodes associ-
ated with the problem graph is N, the greedy embedding
scheme [9] has O(N;) time complexity, which finds the
local optimal allocation with O(V, 5’) complexity in each itera-
tion. Minorminer [11] requires O(N,N,) iterations to embed
all clauses. In each iteration, the routing has O(NplogN,)
complexity. Thus, Minorminer shows overall O(N,N2logN,,)
complexity. The complexity of our scheme consists of two
parts: a) popping clauses and allocating their variables to
vertical qubits, where the time complexity is linear to the
number of the vertical qubits; b) traversing each horizontal
qubit once to satisfy a connection requirement, which only has
a constant time complexity via a hash table. By benefiting from
our topology-aware mapping scheme, our time complexity is
O(N,). As the allocation to the vertical lines follows the order
of the queue, we can maximize the variable locality during
embedding, thus further improving the hardware utilization.



Since the auxiliary variables only connect three other vari-
ables, they are only allocated to the horizontal lines, saving
qubits on vertical lines.

C. Noise Optimization

Theoretically, a noise-free QA is able to find the global
minimum. However, noise may trap QA at a local minimum,
reducing the computation accuracy. Part of noise is amplified
in the normalization step that rescales the coefficients of the
objective function to fit the hardware constraints, making the
energy curve less steep. Energy gap is used to measure this
steepness, which is defined as the minimum output of the
objective function (Equation 5) when the clause is unsatis-
fiable. A higher energy gap suggests a higher probability that
QA can converge to the global minimum [3], [24], [50], [73].
Mathematically, the normalized objective function H7°"™ can
be expressed as:

HC(XzA)
Bl ©)
dy = max{max( z ) , max (|le,12|)} ,
zeX 2 z1,22€X

where d, is the maximum coefficient among the items
and |J;, 4, |- Thus, after the normalization, the final energy gap
is divided by d,. All prior works [7], [8] set the coefficient
o ; of the objective function of each sub-clause to 1, where
some coefficients may be extremely large compared to other
coefficients, thus, leading to a low energy gap after dividing
d*. We try to increase the small coefficients in Ho, while
keeping d, as the same. We first use o;; = 1 to calculate
the objective function and define d; ; for each clause c; ; as
follows:

dij = max{ max (@) 7 (|Jm,12|)} NG
zEc,;ﬁj 2

which corresponds to the maximum coefficient of the items
involved in the sub-clause c; ; objection function. Since d,. >
d; j, we then increase each sub-clause coefficient o ; to dd_*_,
1,7

and modify the objective function.

HEerm (X, 4) =

| B |
2

max
T1,T2€C

We use ¢c; = x1 Va2 V x3 as a clause example to illustrate
the coefficient optimization. First, ¢; is decomposed into two
sub-clauses ¢;1 = a1 <> 1 V x2 and ¢; 2 = a1 V x3 with
a11 = a2 = 1. We then calculate the coefficient of each
item in H¢ and obtain d,, dq 1, di 2 according to Equation 6
and Equation 7, where

Hc(X, A) B O‘171H61,1 (AX7 A) + 04172H6112 (X, A)
=z1 +T2 — T3+ T1T2 — 20171 (8)
—2a1x2 +ai1x3 +1,
dy = 2, d1’1 = 2, d1’2 =1.
For example, the objective function of c; o has items aq,
x3, and ajx3 with coefficients 0, -1, and 1, respectively.

Thus, di2 = 1. We adjust the sub-clause coefficients to
g = % =land o), = ﬁ = 2. The optimized objective
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Fig. 8. Using a Gaussian Naive Bayes model to fit the energy distribution.
Each problem is randomly generated with 50-200 variables and 50-160 clauses
based on [33].
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Fig. 9. Illustrative example using feedback strategy 2 and strategy 4 to prune
the search space.

function becomes:
He (X, A) = C“ll,lHCl,l(X) + al1,2H61,2(X)
=x1 +x2 — 23 — a1 +x1x2 (9)
—2a121 — 2a172 + 2a123 + 2,

where d,, = d,. Our approach only needs one additional
calculation of the objective function. While some methods
may also increase the energy gap, their iterative approaches to
finding better coefficients are time-consuming [73] or require a
large number of qubits for quantum error-correcting codes [4],
[77].

V. BACKEND: FROM QA 1O CDCL

After quantum annealing, we obtain two types of infor-
mation: 1) the final assignment of each variable, obtained
by measuring the qubit state; 2) the value of the minimized
objective function, represented as the energy of the QA system.
The backend leverages this information to guide the CDCL
search, reducing the overall latency for solving the SAT
problem. In this section, we first classify four basic types
of satisfaction probability of the embedded clauses according
to the energy distribution. We then propose several feedback
strategies to accelerate the CDCL search based on these types.

A. Satisfaction Probability Classification

The SAT problem can only be satisfiable if the objective
function can reach a global minimum of O (Equation 5).
However, for NISQ devices, zero energy is hard to achieve



due to hardware noise. Some satisfiable clauses may be mis-
classified as unsatisfiable. To avoid misleading interpretation,
we propose to classify the embedded clauses into different
types according to their probability of being satisfiable.

As the energy distribution of QA hardware varies with the
noise overhead and device scale, we use an empirical method
to estimate the satisfaction probability. We test 1000 satisfi-
able problems and 1000 unsatisfiable problems with different
numbers of clauses and variables on D-Wave 2000Q, and plot
their energy distribution (Figure 8). We then apply a Gaussian
Naive Bayes model to fit this distribution. Specifically, we
choose 90% as the factor to partition the energy axis into
multiple confidence intervals. For example, the partition point
‘4.5’ means that for a 3-SAT problem with an energy value
of 4.5, it has a 90% probability to be satisfiable. Finally, we
interpret the results of embedded clauses by identifying the
following confidence intervals:

« Satisfiable problem with interval [0, 0].

o Near satisfiable problem with interval (0, 4.5].
 Uncertain problem with interval (4.5, 8].

o Near unsatisfiable problem with interval (8, 4oc].

B. Guiding CDCL Search

HyQSAT is a cross-iterative process, including a) the QA
part which accelerates the clauses from the clause queue and
sends the satisfaction probability with variable assignments
to the CDCL part; b) the CDCL part that receives the inter-
pretation results of QA to guide the search, and sends new
clauses to QA for acceleration. Depending on the number of
embedded clauses and their satisfaction probability, we divide
them into four cases and propose several feedback strategies
to prune the CDCL search space.

Satisfiable Uncertain | Near unsatisfiable

Strategy 1

Near satisfiable

All embedded
Not all embedded

Strategy 2 Strategy 3 Strategy 4

Feedback strategy 1 is adopted when all clauses are
embedded and demonstrated as satisfiable, which ends the
CDCL search and outputs the variable assignment. Feedback
strategy 2 is applied in the case that only part of the
clauses are embedded and satisfiable, or the QA result is near-
satisfiable. For this case, we maintain the variable assignments
during the CDCL search as these assignments have the highest
probability of being close to the final solution. Figure 9
(a) illustrates a case where the assignments {xo,x5,24} =
{0,0,1} from QA can be directly used in the next search state
of the CDCL part instead of thoroughly visiting the entire
space. Feedback strategy 3 is executed when QA cannot
distinguish the satisfaction of clauses, which contributes to
no acceleration for the classic CDCL. Feedback strategy
4 helps to prune the unnecessary CDCL search state when
the embedded clauses are hard to be satisfied. Concretely,
near-unsatisfiable implies that any assignment of the variables
involved in QA cannot satisfy the embedded clauses. Thus, we
prioritize these variables in the CDCL search to speed up the
backtrack from the conflict state. Figure 9 (b) illustrates a case

where the clause x5 V x3 shows near-unsatisfiable results. We
choose to assign these two variables in the decision of CDCL
so that the search can quickly reach the conflict state without
visiting 4.

VI. EVALUATION
A. Experiment Setup

Benchmark. We evaluate HyQSAT with 14 major bench-
marks from various domains, including graph colouring (CG),
circuit fault analysis (CFA), block planning (BP), inductive
inference (II), integer factorization (IF), cryptography (CRY),
and artificial intelligence (AI), which are listed in Table I.
Their number of variables ranges from 48 to 6325, and
the number of clauses ranges from 186 to 131973. For Al
problems, each benchmark contains specially-designed 3-SAT
problems that are hard to solve using the classic CDCL algo-
rithm. Due to the access limitations of D-Wave, we randomly
select 10 problems per benchmark. All test data are derived
from open-source SAT benchmarks [33], [67].

Implementation. We apply MiniSAT [70] and KisSAT [14]
as classic CDCL baselines. MiniSAT is a popular CDCL
implementation written in C++ with VSIDS heuristic [49].
KisSAT is another implementation which applies similar learn-
ing mechanisms [43] and heuristics [40] as MiniSAT and wins
the SAT competition in 2022. We build a noise-free HyQSAT
simulator based on the D-Wave’s QA simulator with a long
timeout to avoid simulation error [19]. We also implement
HyQSAT on a real-world QA platform using D-Wave 2000Q
via its internet API. All experiments of classical algorithms are
conducted on Intel ES 1.7GHz CPUs with 32Gb memory. We
set the annealing time and the readout time of QA to 20us
and 110us, respectively [15], [65]. The flux-bias offset and
readout thermalization of QA are both configured to O.

Methodology. For the noise-free HyQSAT simulator, we
compare the number of iterations with the classic CDCL
algorithm. With a total number of iterations K of classic
CDCL, we empirically consider the first v/K iterations as the
warm-up stage. We observe that deploying more iterations to
HyQSAT does not contribute to a computational gain. The
CDCL heuristic works better than QA with existing hardware
after the warm-up stage. The number of iterations of AIS
would increase by 20% if we deploy all iterations to QA.
For the real-world QA, we evaluate the end-to-end execution
time of HyQSAT, which consists of frontend time on CPU and
QA execution time on D-Wave 2000Q, backend time on CPU,
and the remaining CDCL time on CPU. The baseline is the
MiniSAT and KisSAT time spent on the CPU. Since existing
QA-based approaches embed the entire 3-SAT problem to
QA [7], [8], which shows limited scalability, e.g., [8] can only
handle 80 variables and 110 clauses. Our benchmarks cannot
be solved on the QA hardware using existing approaches. We
only compare their embedding schemes, including the Mi-
norminer algorithm [11] and the place and route algorithm [8].

B. Iteration Reduction in the Noise-free Simulator

Table I shows the number of iterations using the clas-
sic CDCL algorithm (MiniSAT) and HyQSAT. Here, one



TABLE I
THE ITERATION NUMBER OF 14 BENCHMARKS USING CLASSIC CDCL AND HYQSAT.

Domain Benchmark #Variable  #Clause #Problem #(F:IIt)e(l?;iE)Zlol ;[I)t,eQr:é:‘n fe‘:iguction ?efi(:lncltei?)z xs:‘lction x:il:lction
GCl: Flat150-360 450 1680 100 434 179 2.75 242 9.26 1.46
Graph Coloring GC2: Flat175-417 525 1951 100 666 238 3.22 2.79 9.97 1.41
GC3: Flat200-479 600 2237 100 1206 414 3.35 291 9.92 1.37
Circuit Fault Analysis | CFA 435-1027 1027-34238 4 381 189 83.21 17.28 329.00 0.90
Block Planning BP 48-6325 261-131973 5 7 1 7.00 6.74 10.00 4.00
Inductive Inference 11 66-1728 186-24792 41 235 113 6.82 3.05 25.00 0.89
L. IF1: EzFact 193-1729 1113-11001 30 13708 7521 33.92 19.25 59.37 1.60
Integer Factorization i
IF2: Lisa 1201-1453  6563-7967 14 345620 179590 3.06 2.40 10.60 1.34
Cryptography CRY: Cmpadd 2724584 780-13236 S 180 6 37.56 37.48 40.00 35.13
All: UF150-645 150 645 100 2724 642 4.13 332 13.33 1.53
AI2: UF175-753 175 753 100 6191 2953 3.65 2.70 30.05 1.18
Artificial Intelligence AI3: UF200-860 200 860 100 13090 5416 4.38 2.97 46.87 1.21
Al4: UF225-960 225 960 100 32332 14133 8.89 3.86 60.37 1.23
AlS: UF250-1065 250 1065 100 103200 50202 6.72 3.10 134.85 1.03
Average 14.11 7.56 53.47 3.81
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OBP 1 GFAGCIGC2AIIGC3 CAZAIZ  CAl4 Als reduction, which suggests that our backend can effectively

Fig. 11. Time spent in each part of HyQSAT.

iteration includes three steps (decision, propagation, conflict
resolving) of CDCL. The iteration reduction is defined as
HiQng# ;E;&Z:“Zt(ﬁn Overall, HyQSAT outperforms the classic
CDCL algorithm in all 14 benchmarks with 14.11X average
reduction, 83.21X maximum reduction, and 2.75X minimum
reduction. HyQSAT achieves a maximum reduction (329X)
in CFA by detecting conflicts in the first several iterations
via feedback strategy 4 in the backend, which prunes a large
amount of search space at the beginning.

We observe that HyQSAT is particularly suitable for solving
difficult problems. For example, AI4 and AI5 exhibit a higher
reduction compared to AI1-AI3 as they require more iterations.
Artificial intelligence benchmarks have fewer variables and
clauses than the graph colouring benchmarks but show higher
reductions. It is attributed to the low satisfiability of clauses.
In sum, HyQSAT is capable of dealing with large-scale and
difficult SAT problems, which is a fundamental improvement
compared to existing QA-based approaches [7], [8].

We also quantitatively analyze the reduction ablation by
ablating different feedback strategies of the HyQSAT backend
(Figure 10). We do not illustrate the reduction of feedback

reduce the CDCL search space. Strategy 1 provides less
reduction because this strategy is rarely used because most
embedded clauses cannot reach zero energy. The reduction
of strategy 4 on the CFA benchmark is close to the overall
reduction. This is because CFA is an unsatisfiable benchmark,
where strategy 4 is frequently applied to identify some useful
conflicts.

C. Speedup on the Real-World QA

In this section, we implement HyQSAT on real-world QA
and compare the end-to-end running time with the classic
CDCL algorithm on the Intel ES CPU. Table II lists the exe-
cution time of HyQSAT compared to MiniSAT and KisSAT.
HyQSAT achieves speedup in 12 of 14 benchmarks compared
to MiniSAT and 13 of 14 benchmarks compared to KisSAT,
ranging from 1.48X to 12.62X, which outperforms classical
CPU with quantum speedup. We observe that HyQSAT does
not show computational advantages compared to Minisat on
IT and BP benchmarks. The clause of these two benchmarks
shows low conflict frequency. Thus, they can be easily solved
by classic CDCL in a few iterations. In the benchmarks that
require more iterations, e.g., IF1 and AIS, the speedups with
real-world QA are closer to the noise-free simulator result.
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Fig. 13. Evaluating the embedding efficiency in terms of embedding time, success rate, and chain length.

TABLE 11
RUNNING TIME COMPARISON BETWEEN CDCL ON INTEL E5 CPU AND
HYQSAT oN D-WAVE 2000Q.

Minisat [70]  Kissat [14] HyQSAT  Speedup  Speedup #Iteration
time (ms) time (ms) time (ms) (Minisat) (Kissat) variance
GC1 | 7.08 9.60 545 2.19 1.86 0.93
GC2 | 12.09 17.29 5.48 1.92 2.45 0.93
GC3 | 271 30.95 12.52 2.61 3.31 1.04
CFA | 5.03 11.66 3.03 1.76 3.26 5.46
BP 1.40 3.23 1.67 0.81 3.01 0.49
I 1.48 4.18 1.58 0.89 3.53 1.53
1F1 582.92 1249.12 292.13 5.89 12.62 241
1F2 34322.7 30137.88 12451.43 1.91 3.14 1.37
CRY | 022 0.88 0.12 1.48 5.90 1.16
All 20.00 39.38 5.97 5.32 8.82 1.01
A2 72.41 130.99 36.93 2.86 7.88 1.27
AI3 180.72 196.68 82.88 3.72 4.82 0.60
Al4 494.63 318.17 204.05 4.69 4.38 0.98
Al5 1650.92 1307.23 828.8 5.33 3.71 1.42

We also evaluate the noise effect (Table II) which is defined
as Sim%lt fr’t;ﬁt?ﬁ;wn For most benchmarks, the number of
iterations of the real-world QA is similar to the noise-free sim-
ulator, suggesting that our method is noise-tolerant. On several
benchmarks, HyQSAT requires fewer iterations compared to
the noise-free simulator. We hypothesize that it may be the
result of randomness introduced by the noise, which possibly
leads to a better search direction. This advantage primarily
benefits from our hybrid methodology where errors of QA
are not likely to affect the overall correct assignment. The
frontend of HyQSAT also adjusts the clause coefficients of
the objective function, which helps reduce the noise overhead.
The number of iterations on CFA increases the most on D-
Wave 2000Q because CFA is unsatisfiable. HyQSAT requires
more iterations to locate the conflict position under hardware
noise.

Figure 11 shows the breakdown of the HyQSAT execution
time, including the warm-up stage (frontend, QA part and
backend) and the remaining CDCL search. We observe that
it takes 41.11% of the time taken in the warm-up stage,
where HyQSAT is applied to speed up the solving time. In
our frontend, the hardware embedding is pipelined with the
clause queue generation to reduce the execution time. Thus,
the frontend requires less time (2.2%) on the CPU. The QA
execution time on most benchmarks only accounts for a small
part, as a single sampling time of QA is about 130us. BP
benchmark shows a high QA time that represents 39.64% of
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that randomly generates clause queue.

the computational time. This is because this benchmark has
fewer overall iterations, leading to more iterations conducted
on QA hardware. In the backend, satisfaction probability
classification only requires near-constant time. Most backend
time is spent on feedback strategies. Note that although CDCL
takes nearly half of the overall time, this time is also optimized
as we reduce the total number of iterations.

Figure 12 shows the results of an analysis of the relation-
ship between the problem difficulty and speed. In Figure 12
(a), problems with a higher conflict proportion have higher
speedup results from the pruned search space by HyQSAT.
In contrast, benchmark II has less than 1X speedup due to a
relatively small conflict proportion. In Figure 12 (b), problems
that require long classic CDCL times tend to have higher
speedup. This is because the number of warm-up iterations
is large, which can benefit from the acceleration of quantum
computing.

D. Embedding Efficiency

This section evaluates the embedding efficiency of HyQSAT
by comparing two state-of-the-art embedding schemes, Mi-
norminer scheme [11] and the place and route scheme
(P&R) [8]. We choose 50 different clause queues. Each queue
has 250 clauses. We test the embedding time, success rate,
and chain length with different numbers of embedded clauses
(Figure 13 (a-c)). The embedding is considered a failure if it
exceeds the timeout of the 300s.

Embedding time. Compared to Minorminer and P&R
schemes, we achieve 8.95 x 10°X and 2.6 x 105X speedup,
respectively. These two schemes show a polynomial com-
plexity with an initial time. The initialization is used to
analyze the structures of the problem graph and hardware
graph to update their heuristics. However, using HyQSAT, the
embedding process is paralleled with the popping operation of
the clause queue without investigating the whole graph.
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Success rate. We evaluate the embedding ability of dif-
ferent schemes (Figure 13 (b)). The maximum number of
embeddable clauses of our method (170) is slightly smaller
than the Minorminer scheme (180) and larger than the P&R
scheme (120). P&R has a time-consuming heuristic for al-
locating variables, which makes it easily exceed the limited
time when the number of clauses increases. The success
rate of the Minorminer scheme is relatively stable until the
number of clauses reaches 180, which benefits from iterative
adjustment. Without adjustment, Minorminer has a similar
success rate compared to ours. We also calculate the number
of successfully embedded clauses (the area below the curve).
Our method is 82% (667 / 815) of Minorminer for successful
clauses, which is acceptable when considering the speedup of
embedding time and longer chain length. HyQSAT considers
the topology of the 3-SAT problem graph, such as the sparse
connection between variables and auxiliary variables. Thus, it
does not require complicated cost functions and adjustment
operations. As a result, our embedding method is faster than
the Minorminer scheme while showing a similar embedding
capacity.

Chain length. A shorter chain length produces less hard-
ware noise. When the number of clauses reaches the maximum
capacity, the average chain length of our method is about
1.59X longer than the other two schemes. Such limitation
arises from the absence of a complicated routing and adjust-
ment to optimize the chain length between qubits. With about
10° speedup in embedding time along with the ability of our
approach to tolerate noise, we consider that an increased chain
length is acceptable for solving 3-SAT problems.

E. Effect of the Clause Queue Generation

This section compares the clause queue generation of the
HyQSAT frontend to random generation. The baseline is the
number of iterations of the classic CDCL algorithm. Figure 14
illustrates a 2.77X improvement compared to the random
method. The improvement results from the application of an
activity score to identify the clauses with high conflict fre-
quency. By deploying the hard clauses from the queue head to
QA, we reduce the number of iterations by transferring a large
number of conflicts to high-parallelism QA. We observe that
the iteration reduction improves more in the last 7 benchmarks.
These benchmarks have more complex clauses that are hard
to solve by CDCL and benefit more from our algorithm.
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TABLE III
EVALUATION OF HYQSAT SCALABILITY.

Benchmark  16x16 grid  24x24 grid  32x32 grid 64 x64 grid
All 4.09 341.51 344.79 348.71
Al2 3.32 1035.21 1034.00 1037.66
AI3 4.04 2357.17 2321.82 2208.66
Al4 5.70 5183.60 4971.09 5074.64
Al5 6.17 1.51 x 10*  1.52 x 10*  1.52 x 10*
Var500 5.67 7.97 2.20 x 10> 2.31 x 106

FE. Evaluation on Noise Optimization.

As mentioned earlier, we optimize the coefficients in the
objective function to increase the QA energy gap so that QA
can have a higher probability of converging to the global min-
imum. Figure 15 (a) draws the energy surface before and after
optimization under different numbers of clauses and variables.
Overall, our optimization helps to increase up to 1.8X energy
gap. We also observe a larger increase for problems with more
variables and clauses. For problems with 65 variables and 145
clauses, the energy gap improvement is 1.8X on average. In
problems with 30 variables, the improvement is about 1.5X.
When the optimized objective function is applied to QA, a
higher energy gap can separate the near-satisfiable interval
from the near-unsatisfiable interval, which helps the backend
make a more precise decision. After noise optimization, the
near-unsatisfiable interval is pulled out, where there is less
overlapping with the near-satisfiable interval, reducing the
uncertainty interval from 28.1% to 14.0% (Figure 15 (b)). The
mean accuracy of the Gaussian Naive Bayes model trained
exhibits a 12.77% improvement (84.76% — 97.53%).

G. Scalability

We simulate the speedup of HyQSAT on Chimera graph
topologies with different sizes (Table III) compared to Min-
iSAT, where a 10% bit flipping error is added to noise-
free simulation results. The results show that our approach
can scale to larger hardware grids. For AI problems, the
32x32 grid QA topology can nearly embed all clauses, solving
the problem in a few iterations, which leads to more than
348X iteration reduction. We simulate 10 problems with 500
variables. Most of its clauses can be embedded by the 64 x 64
grid QA topology with a significant speedup.

VII. DISCUSSION
A. Switching Latency

In practice, the switching latency between classical com-
puters and QA consists of: a) communication time between
classical computers and peripheral devices; b) pre-processing
time for peripheral devices to generate pulses to control the
quantum system; c¢) post-processing time to interpret pulses
from QAs. The communication time can be eliminated by
implementing the CDCL part on FPGAs of peripheral devices,
which has a similar computational latency per iteration as
the CPU-based CDCL (16ns per iteration on average [31]).
The pre-processing time between FPGA and QA only takes
160ns using the customized FPGAs [17], [28]. In addition,
the real-time feedback techniques [10], [18] can reduce the



post-processing time to 500ns. Based on these techniques,
the switching latency is within microseconds, which can be
covered by the QA execution time (130us).

B. From 3-SAT to K-SAT Problem

3-SAT problem is a representative branch of SAT problems
and has been widely studied recently. Theoretically, any K-
SAT problem can be encoded into a minimization problem
and embedded into QA hardware. However, the encoding of
K-SAT can introduce more auxiliary variables, resulting in
hardware inefficiency. For example, embedding a clause with
26 variables requires introducing 24 auxiliary variables. Such
limitation comes from the non-all-to-all hardware topology of
qubits connection since it is hard to physically implement
a fully-entangled quantum chip. We consider two potential
approaches to extend HyQSAT to K-SAT problems. One might
assign variables in the decision step to transform clauses to
3-SAT clauses in the frontend. This method may sacrifice
some potential speedup as it involves more iterations in
CDCL. Another approach might design an application-specific
QA architecture similar to [39], [52], where the connection
topology is specified for K-SAT problems within a specific
domain.

VIII. RELATED WORK

A. SAT Algorithm

CDCL has been widely used to solve SAT problems due
to its high speedup [12], [25], [41], [49]. The look-ahead
solver explores one level of the tree search to detect potential
conflicts [32]. We can explore a higher number of levels and
get more information thanks to quantum speedup. VSIDS
heuristic helps to find variables with high conflict frequencies
that need to be assigned at first [49]. We extend this method
to identify hard clauses when generating a clause queue.
To improve search efficiency, recent CDCL solvers tend to
replace heuristic with local search [12] and reinforcement
learning [38]. However, these methods show poor scalabil-
ity. Their feedback strategies are hard to be applied to QA
hardware because of the noise overhead.

Complementary quantum SAT approaches are based on
Grover algorithm [13], quantum approximate optimization [2],
or quantum random walks [35]. They fail to handle large-scale
problems with real-world gate-based quantum computers [64],
[72], [74]. Existing QA approaches are also inefficient as they
embed all clauses to hardware, leading to long frontend time
and high noise overhead [7], [8]. Hybrid quantum-classical
algorithms were introduced to overcome the challenges of
existing quantum computing [44], [72]. Some algorithms were
designed to solve other problems [29], [54], [59], [60], e.g.,
variational quantum algorithms [74]. To the best of our
knowledge, our method is the first hybrid quantum-classical
algorithm that provides an end-to-end quantum speedup for
SAT problems.
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B. Embedding

The properties of hardware embedding are derived from
graph theory [66]. [8] propose an algorithm to learn from a
conventional circuit mapping algorithm where sub-functions
are placed into a hardware graph and connected by rout-
ing [27], [34]. [71] designed an approach aiming at finding
small chain lengths using a fast cost function for placement.
Recent works have tried to reduce embedding time by exploit-
ing QA topology [9], [11], [37]. For example, some works
leverage tree-width of the problem graph [9], [36], or node
connectivity as heuristics to optimize the allocation [11]. [37],
[56] also achieve linear time complexity for densely-connected
problem graphs. However, the problem graph of SAT problem
shows a sparse connection due to auxiliary variables.

C. Noise Optimization

For the noise introduced before quantum annealing, there
are works that studied coupler strength and annealing time
via empirical method [15], [65] and mathematical method [3],
[50], [73]. Introducing auxiliary qubits [4], [21], [76], [77] and
energy penalty [62] can increase the energy gap and reduce
noise, however, it decreases the embedding scale of instances.
[73] suggest an approach that iteratively increases the coupler
strength to find suitable configuration parameters. For the
noise introduced after quantum annealing, there are several
calibration methods to reduce the effect of the noise [58], such
as majority voting [62], [63] and greedy descent [6]. All these
methods ignore the noise introduced in the normalization step
of QA. By adjusting the coefficient of sub-clauses, our method
can increase the energy gap while maintaining the embedding
scale.

IX. CONCLUSION

We propose a hybrid approach for solving 3-SAT problems,
called HyQSAT, which takes advantage of both quantum
parallelism and classical algorithms. Depending on the conflict
frequency of clauses, our frontend generates a clause queue
and embeds the head clauses into hardware. In the backend,
we propose a methodology to leverage QA results to guide
the CDCL search. We employ some optimization techniques
to reduce noise overhead, including coefficient adjustment and
confidence interval partition. Our experiments demonstrate that
HyQSAT can achieve real quantum speedup (up to 12.62X)
on D-Wave 2000Q, compared to the state-of-the-art classical
methods.
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