
Calabash: Accelerating Attention using a Systolic
Array Chain on FPGAs

Zizhang Luo∗
School of

Integrated Circuits
Peking University

semiwaker@pku.edu.cn

Liqiang Lu∗
College of Computer Science

and Technology
Zhejiang University

liqianglu@zju.edu.cn

Yicheng Jin
Trinity College of
Arts and Sciences
Duke University

yicheng.jin@duke.edu

Liancheng Jia
School of

Computer Science
Peking University
jlc@pku.edu.cn

Yun Liang†
School of

Integrated Circuits
Peking University

ericlyun@pku.edu.cn

Abstract—In recent years, attention mechanism has achieved
remarkable performance in natural language processing and
computer vision applications, at the expense of high compu-
tation cost. FPGAs have been demonstrated to be an effective
hardware platform for various AI applications. However, the
attention mechanism involves complex data dependency, which
makes FPGA acceleration difficult. In this paper, we propose
Calabash, an FPGA accelerator for attention-based applications.
We design a chain of two systolic arrays, applying the same
dataflow. Then, we design two scheduling techniques for different
matrices to ensure the intermediate matrix can be cached in
the on-chip memory. Finally, we develop analytical models for
resource utilization estimation, workload balancing, and latency
prediction to guide design space exploration. Experiments show
that Calabash achieves 1.76 TOP/s, 1.06 TOP/s on Xilinx VU9P
and ZCU102 platforms, yielding an average 50.1X and 3.94X
energy-efficiency improvement compared with CPU and GPU,
respectively.

I. INTRODUCTION

Attention mechanism is an emerging neural network primi-
tive that allows the model to focus on relevant parts of the input
(either text or image) when producing an output element. Re-
cent studies have demonstrated that attention mechanism can
be applied to various AI applications, such as computer vision
[19], natural language processing [25], [4], [22], [11]. For
example, Transformer is a well-known network architecture
proposed by Google that leverages the attention mechanism,
and has achieved remarkable improvement in the translation
task [25].

A myriad of novel architectures have been proposed under
the umbrella of the transformer family since its sensational
debut. The core of transformers is a variant of attention
mechanism, namely scaled dot-product attention. As shown
in Figure 1, its computation can be divided into two stages.
In the first stage, the input sequence is multiplied with a set
of weight matrices to generate three matrices (query, key, and
value). In the second stage, we calculate the score matrix by
multiplying the query matrix and the key matrix, divide it by
a constant and then apply row-wise softmax function. Finally,
we multiply the resultant matrix of normalized probability with
the value matrix to generate the final output. In addition, the

* These authors contributed equally.
† Corresponding Author

Transformer paper further proposes multi-head attention where
several heads run through attention mechanism in parallel [25],
which allows the model to jointly attend to information from
representation subspaces at different positions. We depict the
multi-headed case at the bottom of Figure 1.

Recently, FPGAs have emerged as an efficient platform
for various AI applications thanks to their high performance,
energy efficiency, and flexibility [21], [5], [26], [24], [14],
[13], [28], [18], [29], [16], [17]. Prior FPGA designs for AI
applications primarily focus on accelerating a single kernel
such as matrix multiplication and convolution [3], [9], [10].
However, attention mechanism invokes multiple kernels with
complex data dependency, which poses new challenges for
FPGA acceleration. First, attention mechanism involves a
general-purpose matrix multiplication chain (GEMMc), where
three input matrices (Q,K, V ) are multiplied together to
generate an output matrix (Z = softmax(Q × KT ) × V ).
Moreover, the intermediate result needs to conduct a softmax
function row by row before the next matrix multiplication. It
is very challenging to coordinate the execution of all these
kernels and ensure the data transfer between different kernels
goes smoothly. The second challenge comes from the large
matrices involved in the inference of attention-based models.
For example, BERT-base model [4] has a typical matrix size
of 512×768, which requires more than 20MB to store all the
necessary matrices of a single layer. As the block RAM size
of FPGAs is usually less than 10MB, input matrices need to
be partitioned into tiles. However, it is difficult to determine a
partition scheme that is the most amenable for the architecture.

In this paper, we propose Calabash, an efficient architecture
for accelerating attention-based applications on FPGAs. We
first propose a systolic array chain to conduct the GEMMc
operation. To avoid extra data movement and rearrangement,
we carefully design the two systolic arrays to share the same
dataflow. More clearly, they both use output stationary (OS)
dataflow, where data are accessed in a row-major pattern
for both input and output. Besides, Calabash supports the
softmax function by inserting multiple EXP modules that
approximate the exponential operator based on look-up tables.
We also propose a partition scheme that partitions the key
and query matrix in row dimension, and partitions the value
matrix in column dimension. We use different scheduling



Fig. 1. Computation stages in the attention mechanism.

techniques for different matrices. This helps to ensure that
data layout is consistent during the on-chip and off-chip data
communication. Finally, we build analytical models to estimate
various performance metrics and rely on them to determine the
optimal parameters (e.g., partition factors, systolic array size)
to minimize the total latency.

Our contributions are summarized as follows,
• We propose Calabash, an efficient architecture to accel-

erate attention on FPGAs. Calabash employs a systolic
array chain to accelerate the GEMMc.

• We propose a partition method to partition the matrices
into tiles to reduce the memory requirement and also
propose a scheduling scheme for the partitioned tiles to
keep the data layout consistent during data transfer.

• We develop an analytical model to predict the resource
utilization and latency. And we use this model to find the
optimal design with minimum latency.

We perform rigorous validation of our techniques using
the state-of-the-art transformer-based models, including BERT
[4], GPT-2 [22], BART [11]. Experiments demonstrate that
Calabash achieves 1.76 TOP/s, 1.06 TOP/s on Xilinx VU9P
and ZCU102 platforms. Calabash outperforms Intel E5-2698
v4 with 2.5X - 6.7X speedup, and 27.0X - 77.3X energy-
efficiency improvement. Compared with NVIDIA 2080Ti GPU
and V100 GPU, Calabash shows 4.9X - 5.1X and 5.4X - 5.6X
energy-efficiency improvement.

II. BACKGROUND

Attention mechanism can be described as mapping a query
vector and a set of key-value vector pairs to an output vector.
Multiple vectors of queries, keys and values form the query
matrix, key matrix, and value matrix, respectively. We can
divide the computation of attention mechanism into two stages,
as shown in Figure 1. In the first stage, the query (Q), key
(K), value (V) matrices are obtained by multiplying the input
matrix and corresponding weight matrices (WQ,WK ,WV ). In
the second stage, the score matrix is calculated by multiplying
the query matrix and key matrix. We then divide the score
matrix by the square root of dimension of the key vectors, and
pass it to a row-wise softmax function where the exponential
operation ex is required. Finally, the output matrix of attention
mechanism is generated by multiplying the normalized score
matrix and value matrix. In summary, the attention mechanism
can be formulated as follows.

S(i, j) =
∑
k

Q(i, k)K(j, k) (1)

Fig. 2. Latency profiling on 2080Ti GPU.

P (i, j) =
e(S(i,j)/

√
dimk)∑

j e
(S(i,j)/

√
dimk)

(2)

Z(i, j) =
∑
k

P (i, k)V (k, j) (3)

According to Equation 1 and 3, each output element de-
pends on one row of query matrix, the entire key matrix and
one column of value matrix. Besides, according to Equation 2,
to calculate P (i, j), the entire row i of score matrix is needed.
The complex data dependency of attention mechanism makes
it difficult for FPGA acceleration. Moreover, the attention
mechanism can involve multiple heads, namely multi-head
attention. Each head helps the model to project the input
sequence into a certain representation subspace for better
interpretation. For multi-head attention, each head corresponds
to one weight matrix and we can batch these matrices into a
larger matrix, as shown in Figure 1.

We characterize the execution of attention mechanism by
performing a detailed breakdown analysis on 2080Ti GPU.
We use two state-of-the-art benchmarks, BERT [4] and GPT-
2 [22]. We observe that execution time is mostly spent in the
two stages of attention mechanism. For GPT-2 benchmark,
attention accounts for 86.7% computation and it is 81.1% for
BERT benchmark, as shown in Figure 2. The rest of the time
is spent on the layer normalization and concatenation. Thus,
hardware acceleration of attention mechanism is the key to
overall performance.

III. ARCHITECTURE DESIGN

A. Overview

Figure 4 presents the overall architecture of Calabash. We
design a systolic array chain as the computation engine. For
the first stage of computation in Figure 1, we calculate the
query, key, and value matrices individually using the two
systolic arrays. The output of the two systolic arrays is directly
stored to the off-chip memory. For each GEMM operation, we
partition the input matrix into two sub-matrices equally and
assign them to the two systolic arrays. For the second stage
of computation, the two systolic arrays work together in a
pipeline manner, which takes the query, key, value matrices as
inputs, and calculates the output matrix. The softmax function
is performed between two systolic arrays, which receives the
output of the first systolic array and sends the results to the
second systolic array.

To minimize the data transfer, Calabash optimizes the
data layout from two aspects. First, the two systolic arrays
apply the same output stationary (OS) dataflow for GEMM
implementation [2]. Using this dataflow, the partial sums of

2



Fig. 3. Systolic array chain for accelerating attention mechanism.

Fig. 4. Architecture overview.
one output element is always generated by the same PE.
Therefore, each output element stays stationary in a PE, and
each PE sends the input data of two input matrices horizontally
and vertically to the neighboring PEs at each cycle. We
choose OS dataflow because both input and output data are
accessed in row-major sequence, which ensures data moves
smoothly between two systolic arrays. Second, we propose
a partition scheme that partitions the query matrix and key
matrix in the row dimension, and partitions value matrix in the
column dimension, as shown in Figure 4. By doing this, the
intermediate score matrix generated by the first systolic array
can be directly used by the second systolic array without data
rearrangement.

B. Systolic Array Chain

The key component of Calabash is a systolic array chain.
Figure 3 depicts the detailed dataflow of the second stage.
Data passes through the first systolic array, then the EXP unit,
and the second systolic array. The first systolic array receives
the query matrix horizontally with each row of query matrix
mapped to one PE row. The row of key matrix is vertically
sent to the PEs of the systolic array to conduct the operation
(S = Q × KT ). In this dataflow, each single score element
is kept stationary in a PE until the calculation is finished.
The entire PE array performs an outer-product where each
element in one column of matrix Q is multiplied with all the
elements in one row of matrix KT . The score matrix S, which
is generated in row-major sequence by the first systolic array
is passed to the EXP unit to calculate the softmax matrix using

Equation 2. The EXP module calculates the non-normalized
value e(S(i,j)/

√
dimk) and pass it to the next systolic array. The

normalization is delayed to the end of computation when the
entire row of the score matrix is generated.

The second systolic array uses the same dataflow as the
first one, which means each row of the score matrix can be
directly accessed without rearrangement. The second systolic
array multiplies the non-normalized matrix P with the value
matrix V . Each column of matrix V is mapped to one column
of the PE array and each row of matrix P is mapped to one
row of the PE array. Finally, the result matrix is divided with
the accumulated value from EXP unit for normalization.

C. PE Details

For the first systolic array, the PE in the position (x,y)
multiplies the query Q(x,j) with key K(y,j), and accumulates
the multiplication result to the score S(x,y). In the next cycle,
the query Q(x,j) is sent forward to the adjacent PE(x,y+1)
while the key K(y,j) is sent to PE(x+1,y). The output is kept
stationary in a PE. When one PE finished its computation, it
will move its score and the gathered score from the left to the
right-neighboring PE. In the end, the right-most PE will collect
the entire row of the score matrix. The second systolic array
follows the same dataflow but operating on different matrices.

D. EXP Module Design

We adopt similar design in [27] to conduct the exponential
operator. The xth EXP module outputs one eS(x,j) in each
cycle. eS(x,j) is firstly converted into 2S(x,j)/ ln 2. S(x, j)/ ln 2
is then split into the integer part u and the fractional part
v. In this manner, the result equals to 2u+v = 2v << u.
Different from the approach in [27], we use a look-up table to
approximate 2v . Considering that the first-order approximation
of 2v is (1 + v ln 2), we use (d + v) for approximation as it
requires less logic resources. d is determined by a look-up
table, which minimizes the error for a specific range of v.

E. Workload Partition and Scheduling

The matrices in Figure 1 are usually with large size in
modern transformer models. Considering the limited memory
resource on FPGAs, we have to partition the matrices into
tiles, as shown in Figure 5 (a). Clearly, the query tile contains
TQ rows of query matrix, the key tile contains TK rows, and

3



Fig. 5. The partition of the query, key, value matrix to fit the systolic array size and the scheduling for the partitioned tiles.

the value tile contains TV columns of value matrix. Such
partition strategy determines the systolic array size, as shown
in Figure 5 (b). The size of the first systolic array is TQ×TK ,
which generates a score tile with the same size. For the second
systolic array, the size is TQ × TV .

As the matrices are partitioned into multiple tiles, there
are different access sequence of these tiles. In Calabash, we
schedule the input tiles to ensure the score matrix is calculated
in a row-by-row manner. In other words, we can cache the
query tile on chip, and multiply it with different key tiles. In
this manner, TQ rows of the score matrix can be stored using
on-chip memory and used by the second systolic array without
off-chip memory transfer. Similarly, this score tile is reused by
multiple value tiles to generate a TQ × TV result tile. Figure
5 (c) shows a tile scheduling example. We partition the input
matrices (Q, K, V) into two tiles. The Q1 tile is kept on chip
and multiplied with K1 and K2 tiles in two iterations. The
generated S1 and S2 tiles compose TQ rows of score matrix,
which are sent to the second systolic array. The S1 and S2
tiles are reused twice with value tiles V1 and V2 to calculate
the result tile Z1 and Z2.

IV. DESIGN SPACE EXPLORATION

A. FPGA Resource Utilization
Our implementation of attention involves a few design

parameters (TQ, TK , TV ), which are the partition factors for
query, key, value matrix. These design parameters determine
the on-chip memory requirement and the systolic array size,
which further affect the performance and latency. We first
model the computation and memory resources. The compu-
tation resource is modeled as the number of multipliers in the
systolic array chain and the EXP module. We use αEXP to
denote the number of multipliers for one EXP module. For
the memory resource, we calculate the number of required
memory banks where we assume that one bank only has one
port for data transfer.

Resmultiplier = TQ × TK + TQ × TV + TQ × αEXP

Resbank = 6TQ + 2TK + 2TV
(4)

As the query tile and score tile are cached using the on-chip
memory and iteratively reused, the bandwidth requirement
mainly depends on the access of key tiles and value tiles.
Assuming that the partition factor is much smaller than the

overall matrix size, and the data is stored in 16 bits. The
bandwidth requirement can be estimated as follows,

BW = (TK + TV )× 16bits× freq (5)

where freq is the FPGA frequency.

B. Latency Modeling and Workload Balancing

The latency of the first stage can be easily derived as
each systolic array works individually. The second stage is
more complex as the two systolic arrays are pipelined. In
the following, we model the latency of the second stage. For
simplicity, the GEMMc operation is notated as,

Z[LQ][LV ] = Q[LQ][LN ]×KT [LN ][LK ]× V [LK ][LV ] (6)

The latency for calculating one output tile in each systolic
array can be written as

LATsa1 = LN + 2TK + TQ,

LATsa2 = LK + 2TV + TQ

where LN is the latency to perform dot-product operation for
two vectors with length LN and 2TK + TQ is the skewing
factor for systolic array, as shown in Figure 5 (b). The latency
for computing TQ rows of the score matrix and the result
matrix is

LATs = ⌈LK

TK
⌉ × LATsa1,

LATz = ⌈LV

TV
⌉ × LATsa2

The total latency is

LATtotal = ⌈LQ

TQ
⌉ ×max(LATs, LATz) (7)

In general, the input matrix size is much more larger than the
design parameters,

(LQ, LN , LK , LV ) >> (TQ, TK , TV )

When LATs = LATz , the workloads of the two systolic
arrays are balanced. Our goal is to minimize the total latency
when the workload balance constraint is satisfied,

LATtotal ≈
LQ

TQ
×max(

LK × LN

TK
,
LV × LK

TV
) (8)

4



TABLE I
PERFORMANCE COMPARISON WITH 2080TI GPU AND XEON E5-2698 V4 CPU ON THREE BENCHMARKS.

Applications BERT[4] GPT-2[22] BART[11]

Platform Intel E5
-2698 v4

Nvidia
2080Ti

Nvidia
V100

Xilinx
VU9P

Xilinx
ZCU102

Intel E5
-2698 v4

Nvidia
2080Ti

Nvidia
V100

Xilinx
VU9P

Xilinx
ZCU102

Intel E5
-2698 v4

Nvidia
2080Ti

Nvidia
V100

Xilinx
VU9P

Xilinx
ZCU102

Technology 14nm 12nm 12nm 16nm 16nm 14nm 12nm 12nm 16nm 16nm 14nm 12nm 12nm 16nm 16nm
Frequency

(MHz) 2200 1950 1530 243 300 2200 1950 1530 243 300 2200 1950 1530 243 300

Performance
(TOP/s) 0.28 8.54 8.19 1.76 1.06 0.32 9.32 10.2 1.76 1.06 0.73 7.48 7.19 1.61 0.96

Power (W) 135 260 275 12.9 6.6 135 260 275 12.9 6.6 135 260 275 12.9 6.6
Energy-eff
(GOP/s/W) 2.07 32.8 29.8 136.4 160.7 2.37 35.8 36.4 136.4 160.7 5.41 28.8 26.1 124.8 146.2

V. EXPERIMENT

A. Experiments Setup

We evaluate Calabash using three well-known transformer-
based models in the Natural Language Processing (NLP)
domain, including BERT [4], GPT-2 [22], BART [11]. The
data is quantified into 16-bit integer arithmetic.

We target Xilinx VU9P and ZCU102. Calabash is written
in the Chisel[1]. Xilinx Vivado is used to obtain the FPGA
bitstream. We use 2080Ti GPU platform operated at 1.95
GHz, and V100-DGXS GPU platform operated at 1.53 GHz.
We measure the performance of GPUs using PyTorch with
cuBLAS 11.2. For CPU, we use Intel Xeon E5-2698 v4
platform operated at 2.2 GHz and PyTorch MKL 2020.0.2.

B. Performance Evaluation

For Calabash on Xilinx V9PU and ZCU102, we set the
design parameters {TQ = 64, TK = TV = 32}, {TQ =
64, TK = TV = 16}, respectively. Table I gives the
comparison results at the batch size of 1.

The theoretical performance of Calabash is 1.99 TOP/s
(4096×0.243×2) and 1.23 TOP/s (2048×0.3×2) on VU9P
and ZCU102. As shown in Table I, our design achieves 1.76
TOP/s and 1.06 TOP/s on VU9P and ZCU102, which results in
88.4% and 87.0% PE efficiency. The gap mainly comes from
the initial and the last iterations in the pipeline where only one
systolic array is activated, as shown in Figure 5 (c). In the three
benchmarks, the most common size is 512×768 for query, key,
value matrices, which requires 512

16 = 32 iterations to get the
first 64 rows of score matrix. And the iteration number for each
systolic array is 512

16 × 768
64 = 384. Therefore, the theoretical

efficiency of the systolic array chain is 384
384+32 = 92.3%,

which is similar to the real efficiency.
Table II lists the predicted and real resource utilization and

performance. It shows that our resource model can accurately
estimate the BRAM and DSP utilization. As the maximum
of matrix width is 768, each row is stored in one BRAM.
According to Equation 4, the predicted BRAM utilization
is 512 (384+64+64) and 448 (384+32+32) for VU9P and
ZCU102, respectively. It is reasonable that the real BRAM
utilization is slightly higher than the predicted. The extra
BRAMs are used for FIFO logic in the off-chip data transfer.
The predicted DSP number is 4224 (2048+2048+128) and
2176 (1024+1024+128) for VU9P and ZCU102, which is
very close to the real DSP utilization. We also give the pre-
dicted performance calculated by dividing the total operations

TABLE II
RESOURCE UTILIZATION BREAKDOWN

BRAM18Kb DSP FF LUT

VU9P

4096×PEs
64×EXPs

Systolic Array 0 4096 210691 204380
EXP 0 128 1024 2158
Mem 512 0 255 4534

Others 128 3 1134 37
Total 640 4227 213004 211109

Available 4320 6840 2364480 1182240
Utilization 14.8% 61.8% 9.0% 17.8%
Predicted

Utilization 11.9% 61.7% - -

Predicted
Performance 1.84 TOP/s (real: 1.76 TOP/s, 5% error)

ZCU102

2048×PEs
64×EXPs

Systolic Array 0 2048 106273 71116
EXP 0 128 1024 1903
Mem 448 0 446 3777

Others 64 3 816 31
Total 512 2179 108559 76827

Available 1824 2520 548160 274080
Utilization 28.1% 86.4% 19.8% 28.0%
Predicted

Utilization 24.6% 86.3% - -

Predicted
Performance 1.13 TOP/s (real: 1.06 TOP/s, 7% error)

with the estimated latency. The results show that the error rate
of performance prediction is within 7%.

VI. RELATED WORK

A few designs have been proposed for attention acceleration
[7], [12], [20], [23], [6], [8], [15]. These accelerators are lim-
ited in either efficiency or generality, and most of them target
ASICs. Sanger[15] proposed another co-design framework for
sparse attention. However its RePE design may cause severe
place and route problem on FPGAs. TRAC[20] proposed a
compiler, a library of operators and modules for implementing
transformer accelerators on FPGAs, which is vertical to this
work.

VII. CONCLUSION

We propose Calabash for attention-based applications accel-
eration. We link two heterogeneous systolic arrays to reduce
the off-chip memory bandwidth requirement, and propose a
scheduling scheme for the partitioned tiles to maintain the
data layout and balance the workload. Experiments demon-
strate that Calabash achieves 1.76 TOP/s, 1.06 TOP/s on
Xilinx VU9P and ZCU102 platforms, which shows an average
50.1X and 3.94X energy-efficiency improvement compared
with CPU and GPU, respectively.

ACKNOWLEDGEMENTS

This work is supported in part by the National Natural Sci-
ence Foundation of China (NSFC) under grant No T2293700
and T2293701

5



REFERENCES

[1] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avižienis,
J. Wawrzynek, and K. Asanović, “Chisel: constructing hardware in a
scala embedded language,” in Proceedings of DAC, 2012.

[2] Y.-K. Chen and S.-Y. Kung, “A systolic design methodology with
application to full-search block-matching architectures,” VLSI, 1998.

[3] J. Cong and J. Wang, “PolySA: Polyhedral-Based Systolic Array Auto-
Compilation,” in Proceedings of ICCAD, 2018.

[4] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” in
Proceedings of NAACL-HLT, 2019.

[5] F. Fahim, B. Hawks, C. Herwig, J. Hirschauer, S. Jindariani, N. Tran,
L. P. Carloni, G. D. Guglielmo, P. C. Harris, J. D. Krupa, D. S. Rankin,
M. B. Valentin, J. D. Hester, Y. Luo, J. Mamish, S. Orgrenci-Memik,
T. Aarrestad, H. Javed, V. Loncar, M. Pierini, A. A. Pol, S. Summers,
J. M. Duarte, S. Hauck, S. Hsu, J. Ngadiuba, M. Liu, D. Hoang,
E. Kreinar, and Z. Wu, “hls4ml: An open-source codesign workflow to
empower scientific low-power machine learning devices,” Arxiv preprint
2103.05579, 2021. [Online]. Available: https://arxiv.org/abs/2103.05579

[6] H. Fan, T. Chau, S. I. Venieris, R. Lee, A. Kouris, W. Luk, N. D. Lane,
and M. S. Abdelfattah, “Adaptable butterfly accelerator for attention-
based nns via hardware and algorithm co-design,” in Proceedings of
MICRO, 2022.

[7] T. J. Ham, S. J. Jung, S. Kim, Y. H. Oh, Y. Park, Y. Song, J.-H. Park,
S. Lee, K. Park, J. W. Lee et al., “A3: Accelerating attention mechanisms
in neural networks with approximation,” in Proceedings of HPCA, 2020.

[8] T. J. Ham, Y. Lee, S. H. Seo, S. Kim, H. Choi, S. J. Jung, and J. W.
Lee, “ELSA: hardware-software co-design for efficient, lightweight self-
attention mechanism in neural networks,” in Proceedings of ISCA, 2021.

[9] L. Jia, Z. Luo, L. Lu, and Y. Liang, “Tensorlib: A spatial accelerator
generation framework for tensor algebra,” in Proceedings of DAC, 2021.

[10] L. Jia, Y. Wang, J. Leng, and Y. Liang, “EMS: efficient memory
subsystem synthesis for spatial accelerators,” in Proceedings of DAC,
2022.

[11] M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy,
V. Stoyanov, and L. Zettlemoyer, “Bart: Denoising sequence-to-sequence
pre-training for natural language generation, translation, and comprehen-
sion,” ACL, 2020.

[12] B. Li, S. Pandey, H. Fang, Y. Lyv, J. Li, J. Chen, M. Xie, L. Wan, H. Liu,
and C. Ding, “FTRANS: energy-efficient acceleration of transformers
using FPGA,” in Proceedings of ISLPED, 2020.

[13] Y. Liang, L. Lu, Q. Xiao, and S. Yan, “Evaluating fast algorithms for
convolutional neural networks on fpgas,” TCAD, 2020.

[14] Y. Liang, Q. Xiao, L. Lu, and J. Xie, “Fcnnlib: A flexible convolution
algorithm library for deep learning on fpgas,” TCAD, 2022.

[15] L. Lu, Y. Jin, H. Bi, Z. Luo, P. Li, T. Wang, and Y. Liang, “Sanger: A
co-design framework for enabling sparse attention using reconfigurable
architecture,” in Procceedings of MICRO, 2021.

[16] L. Lu and Y. Liang, “Spwa: an efficient sparse winograd convolutional
neural networks accelerator on fpgas,” in DAC, 2018.

[17] L. Lu, Y. Liang, R. Huang, W. Lin, X. Cui, and J. Zhang, “Speedy:
An accelerator for sparse convolutional neural networks on fpgas,” in
FPGA, 2019.

[18] L. Lu, J. Xie, R. Huang, J. Zhang, W. Lin, and Y. Liang, “An efficient
hardware accelerator for sparse convolutional neural networks on fpgas,”
in FCCM, 2019.

[19] S. Na, S. Lee, J. Kim, and G. Kim, “A read-write memory network for
movie story understanding,” in Proceedings of ICCV, 2017.

[20] P. Plagwitz, F. Hannig, and J. Teich, “TRAC: compilation-based design
of transformer accelerators for fpgas,” in Proceedings of FPL, 2022.

[21] A. Putnam, et al., “A reconfigurable fabric for accelerating large-scale
datacenter services,” in Proceedings of ISCA, 2014.

[22] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever,
“Language models are unsupervised multitask learners,” OpenAI blog,
2019.

[23] G. Shen, J. Zhao, Q. Chen, J. Leng, C. Li, and M. Guo, “SALO: an
efficient spatial accelerator enabling hybrid sparse attention mechanisms
for long sequences,” in Proceedings of DAC, 2022.

[24] Y. Umuroglu, Y. Akhauri, N. J. Fraser, and M. Blott, “Logicnets: Co-
designed neural networks and circuits for extreme-throughput applica-
tions,” in Proceedings of FPL, 2020.

[25] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” NeurIPS, 2017.

[26] E. Wang, J. J. Davis, P. Y. K. Cheung, and G. A. Constantinides, “Lutnet:
Rethinking inference in FPGA soft logic,” in Proceedings of FCCM,
2019, pp. 26–34.

[27] M. Wang, S. Lu, D. Zhu, J. Lin, and Z. Wang, “A high-speed and
low-complexity architecture for softmax function in deep learning,” in
Proceedings of APCCAS, 2018.

[28] Q. Xiao and Y. Liang, “Towards agile DNN accelerator design using
incremental synthesis on fpgas,” in FPGA, 2022.

[29] Q. Xiao, Y. Liang, L. Lu, S. Yan, and Y. Tai, “Exploring heterogeneous
algorithms for accelerating deep convolutional neural networks on
fpgas,” in DAC, 2017.

6

https://arxiv.org/abs/2103.05579

	Introduction
	background
	Architecture Design
	Overview
	Systolic Array Chain
	PE Details
	EXP Module Design
	Workload Partition and Scheduling

	Design Space Exploration
	FPGA Resource Utilization
	Latency Modeling and Workload Balancing

	Experiment
	Experiments Setup
	Performance Evaluation

	Related work
	Conclusion
	References

