Sanger: A Co-Design Framework for Enabling Sparse Attention
using Reconfigurable Architecture

Liqiang Lu”

School of Electronics Engineering and
Computer Science, Peking University,
Beijing, China
ligianglu@pku.edu.cn

Zizhang Luo
School of Electronics Engineering and
Computer Science, Peking University,
Beijing, China
semiwaker@pku.edu.cn

Yicheng Jin*

School of Electronics Engineering and
Computer Science, Peking University,
Beijing, China
yicheng jin@pku.edu.cn

Peng Li
Institute of Software, Chinese
Academy of Sciences, Beijing, China
lipeng@iscas.ac.cn

Yun Liang’

School of Electronics Engineering and
Computer Science, Peking University,
Beijing, China
ericlyun@pku.edu.cn

Hangrui Bi
School of Electronics Engineering and
Computer Science, Peking University,
Beijing, China
henryb@pku.edu.cn

Tao Wang
School of Electronics Engineering and
Computer Science, Peking University,
Beijing, China
wangtao@pku.edu.cn

ABSTRACT

In recent years, attention-based models have achieved impressive
performance in natural language processing and computer vision
applications by effectively capturing contextual knowledge from
the entire sequence. However, the attention mechanism inherently
contains a large number of redundant connections, imposing a
heavy computational burden on model deployment. To this end,
sparse attention has emerged as an attractive approach to reduce
the computation and memory footprint, which involves the sam-
pled dense-dense matrix multiplication (SDDMM) and sparse-dense
matrix multiplication (SpMM) at the same time, thus requiring the
hardware to eliminate zero-valued operations effectively. Exist-
ing techniques based on irregular sparse patterns or regular but
coarse-grained patterns lead to low hardware efficiency or less
computation saving.

This paper proposes Sanger, a framework that harvests sparsity
in the attention mechanism through synergistic hardware and soft-
ware co-design. The software part prunes the attention matrix into
a dynamic structured pattern, and the hardware part features a
reconfigurable architecture that exploits such patterns. Specifically,
we dynamically sparsify vanilla attention based on a quantized

“These authors contributed equally.
 Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

MICRO °21, October 18-22, 2021, Virtual Event, Greece

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8557-2/21/10...$15.00
https://doi.org/10.1145/3466752.3480125

prediction of the attention matrix. Then, the sparse mask is re-
arranged into structured blocks that are more amenable to hardware
implementation. The hardware design of Sanger features a score-
stationary dataflow that keeps sparse scores stationary in the PE to
avoid decoding overhead. Using this dataflow and a reconfigurable
systolic array design, we can unify the computation of SDDMM
and SpMM operations. Typically, the PEs can be configured during
runtime to support different data access and partial sum accumula-
tion schemes. Experiments on BERT show that Sanger can prune
the model to 0.08 - 0.27 sparsity without accuracy loss, achieving
4.64X, 22.7X, 2.39X, and 1.47X speedup compared to V100 GPU,
AMD Ryzen Threadripper 3970X CPU, as well as the state-of-the-art
attention accelerators A% and SpAtten.

CCS CONCEPTS

« Computer systems organization — Systolic arrays; - Comput-
ing methodologies — Natural language processing.

KEYWORDS

Transformer, attention, sparse, reconfigurable architecture, systolic
array, hardware-software co-design

ACM Reference Format:

Ligiang Lu, Yicheng Jin, Hangrui Bi, Zizhang Luo, Peng Li, Tao Wang,
and Yun Liang. 2021. Sanger: A Co-Design Framework for Enabling Sparse
Attention using Reconfigurable Architecture. In MICRO-54: 54th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO °21), Octo-
ber 18-22, 2021, Virtual Event, Greece. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3466752.3480125

1 INTRODUCTION

Attention-based neural networks have significantly advanced the
progress of machine learning in recent years, setting new state-
of-the-art in domains including natural language processing and


https://doi.org/10.1145/3466752.3480125
https://doi.org/10.1145/3466752.3480125

MICRO 21, October 18-22, 2021, Virtual Event, Greece

computer vision. Specifically, Transformer [55] uses only attention
mechanisms as its building blocks instead of recurrence or convo-
lutions in the traditional models. With such revolutionary model
design, Transformer and its variants [16, 46] dominate a wide range
of NLP tasks including machine translation [55], text classification
[16], text generation [46], etc. In the field of computer vision, at-
tention is widely used, together with convolution, to allow a global
receptive field, leading to improved performance on various com-
puter vision tasks such as image captioning [63], image generation
[66], image segmentation [59], etc.

Attention takes three matrices as its inputs, namely the query
(Q), the key (K), and the value (V). The first step of computing
attention is to obtain a score matrix (S) by multiplying Q and K. The
score matrix is often referred to as the attention matrix. Then, the
score matrix goes through the softmax function for normalization.
The second step is to multiply the normalized score matrix with the
value matrix (V) to generate the final output. Unlike convolution
and RNN that aggregates information locally, vanilla self-attention
computes attention for every pair of queries and keys. The benefit
of a large accessible context comes at the cost of an overwhelm-
ing computational burden, which increases quadratically with the
sequence length. For example, for tasks involving images or long
texts, the input sequence length could go as large as 16K [53]. For
a single input containing 16K tokens, the computation of one self-
attention module of BERT-Base reaches a formidable amount of
861.9 GFLOPs.

In the face of such overwhelming computation pressure when
scaling attention to long sequences, sparse attention emerges as
a promising solution. For sparse attention, the involved sparsity
turns the first step into a general sampled dense-dense matrix
multiplication (SDDMM) computation, where the queries and keys
are dense and the score matrix is sparse according to a sample
mask. In the second step we generate the output by multiplying
the sparse score matrix with a dense value matrix, which is also
a sparse computation called sparse-dense matrix multiplication
(SpMM). Such sparsity leads to irregular data access of keys and
values, making the computation hard to parallelize. Besides, the
distribution of nonzeros determines the workload of PEs, which
will cause a load imbalance problem when the nonzeros are not
distributed evenly.

We divide existing sparse attention mechanisms into two cate-
gories, namely static sparsity and dynamic sparsity. Static sparsity
[2, 11, 18, 31, 65] is pre-determined and independent of the con-
tent of queries and keys. It is usually designed to be structured
to facilitate parallelization on GPUs. For example, [11, 65] employ
block sparsity. However, by imposing restrictions on the distri-
bution of non-zeros, these patterns ignore the inherent relation-
ship between different words, resulting in limited computation
saving at the same level of accuracy. In contrast, dynamic sparsity
[12, 13, 19, 25, 48, 52, 57, 68] achieves a better trade-off between
accuracy and computation savings because its patterns are dynami-
cally generated from the input queries and keys, thus harvesting
the redundancy in attention more effectively and achieving higher
sparsity. For example, [12, 13] perform sparsification after normal-
izing the full attention matrix with the softmax function, which can
learn arbitrary patterns and fully utilize the intrinsic structure of in-
put data. But unfortunately, these patterns can only be determined

Ligiang Lu, Yicheng Jin, Hangrui Bi, Zizhang Luo, Peng Li, Tao Wang, and Yun Liang

at runtime and are usually highly unstructured. Such irregularity
can lead to workload imbalance and poor data locality, resulting in
degraded hardware performance.

This paper proposes Sanger, a software-hardware co-design
framework that accelerates the sparse attention models by com-
bining dynamic sparsity patterns and reconfigurable architecture.
The software part provides sparsity patterns, which can achieve
high performance and a balanced workload. The architecture is
designed with reconfigurability to support the dynamic character-
istics of sparsity, which helps to improve the compression ratio.
More clearly, we design an algorithm to predict the dynamic spar-
sity by computing a low-bit version of the attention matrix and
zeroing out small attention weights via binary thresholding. To
ensure load balance for efficient hardware implementation, we en-
code the resulting attention mask with unstructured sparsity into
multiple fine-grained structured blocks. The prediction and encod-
ing are performed on the fly as we determine the sparsity patterns
dynamically on a per-sample basis.

At the hardware level, identifying that the sparse score matrix is
both the output of the first step and the input of the second step,
we propose a score-stationary dataflow that seamlessly unifies the
computation of SDDMM and SpMM operations. Using this dataflow,
we keep the sparse scores stationary in PEs until the computation is
finished, which effectively avoids the decoding overhead. To allow
more flexibility in the sparsity patterns, we design a reconfigurable
systolic array based on this dataflow. Since the queries, keys, and
values are stored as dense matrices, we decouple the input data reg-
isters from the PE arrays, where the connection between registers
and PEs is dynamically configured by the attention mask.

The contribution of this paper can be summarized as follows.

e We propose Sanger, a hardware and software co-design
framework that exploits the dynamic sparsity in attention
via a reconfigurable architecture. The hardware flexibility
enables the software to achieve high sparsity.

e We propose a dynamic and fine-grained structured pruning
technique with high flexibility and sparsity. Our algorithm
uses low-bit computation to predict sparse attention masks
and encodes them through packing and splitting to keep the
workload balanced.

e We propose a score-stationary dataflow and a reconfigurable
architecture. The dataflow effectively eliminates sparsity
decoding overhead and memory transfer overhead by unify-
ing the SDDMM and SpMM operations. The architecture is
reconfigurable to support a wide range of sparsity patterns.

Experiments show that Sanger can prune BERT to 0.08 - 0.27
sparsity! without accuracy loss. For GPT-2, BART, we can prune it
to 0.15 - 0.35, 0.23 - 0.54 sparsity within 0.5% accuracy loss, respec-
tively. For BERT, GPT-2, and BART, Sanger achieves 4.71X, 6.45X,
3.76X speedup over V100 GPU-FP32, 4.64X, 6.88X, 3.94X speedup
over V100 GPU-FP16, and 22.7X, 13.3X, 13.2X speedup over AMD
Ryzen Threadripper 3970X CPU. For energy-efficiency, the average
improvement of Sanger is 48X, 35X, 113X compared to GPU-FP32,
GPU-FP16, and Ryzen CPU. Compared to the state-of-the-art atten-
tion accelerators A% and SpAtten, Sanger shows 2.39X and 1.47X
speedup.

!In this paper, we term sparsity as the proportion of non-zeros.



Sanger: A Co-Design Framework for Enabling Sparse Attention using Reconfigurable Architecture

MICRO 21, October 18-22, 2021, Virtual Event, Greece

Table 1: Existing sparse attention patterns.

Features Software-hardware co-design Software only

A3 [19] SpAtten [57] FIRANS [31] | Sanger [2, 11, 65] [25, 48, 52] [12, 13, 68]
Sparsity dynamic dynamic static dynamic static data- dynamic
pattern dependent

[ T ]
=

Pattern |
visualization
Pattern unstructured coarse-grained | - fine-grained coarse-grained | coarse-grained | unstructured
regularity structured structured structured structured
Sparsity medium low - high low medium high
Hardware low medium low high low low low
speedup

Queries

Input Weight Head,

Xewyjos
BSIM-MOJ

Values Output ' SpMM

i v = xwV 2= sv ! s v z
Ll e
W !
v z

(a) Computation stages of dense attention mechanism

X(2) 3

(b) Sparse attention computation

Figure 1: Computation of multi-head attention.

2 BACKGROUND AND MOTIVATION
2.1 Primer on Attention

The attention mechanism is the key operation in the Transformer
models, which can be described as mapping a query vector and a set
of key-value vector pairs to an output vector. As the input sequence
contains multiple tokens, their corresponding query vectors, key
vectors, and value vectors form the query matrix, key matrix, and
value matrix. Figure 1 (a) depicts the computation stages of the
self-attention (abbreviated as attention) mechanism. At first, we
obtain the query (Q), key (K), value (V) matrices by multiplying the
embedded input sequence and the corresponding weight matrices.
Next, the score matrix is calculated by multiplying the query matrix
and key matrix, which represents the importance of each input
token when producing an output element. We then normalize the
score matrix with a row-wise softmax function. Finally, the score
matrix is multiplied with the value matrix to generate the output
matrix.

The attention mechanism is essentially a content-based similar-
ity search. In general, most tokens in the sequence are irrelevant
to the current query, which makes the attention mechanism in-
herently sparse. Unlike ReLU or dropout that explicitly zeroes out
elements, operators like softmax and GELU assign near-zero values
to a fair portion of elements, which can be pruned through round-
ing or thresholding. We refer to such sparsification opportunities as
implicit sparsity. In particular, the sparse score matrix is the output
of Q XK and the input of § X V, which turns the attention operation
into SDDMM and SpMM. As shown in Figure 1 (b), the computation

of SDDMM takes dense matrices (Q, K) as inputs and calculates the
outputs based on a sample mask. Here, the sample mask refers to a
binary matrix that indicates which elements need to be calculated
in the output matrix. Besides, we define the SpMM operation as
the matrix multiplication between the sparse score matrix and the
dense value matrix.

2.2 Existing Sparse Attention Designs

Table 1 lists the recent studies on exploiting the sparsity in attention.
Most of them are algorithm-level improvements without hardware
optimization, which we classify as software-only methods. Here we
further divide these works into three sub-categories. The dynamic
sparsity pattern [12, 13, 68] can achieve high sparsity conditioned
on individual input samples during runtime, but require computing
the full attention matrix at first. The static pattern [2, 11, 65] is
predetermined and independent of data. These patterns usually
adopt coarse-grained structures for efficient training on common
accelerators such as dropping entire blocks or rows, but achieve
limited sparsity in the comparison with others. The data-dependent
pattern [25, 48, 52] can be seen as a trade-off between dynamic
sparsity and static sparsity, which tries to derive constrained sparse
patterns from input with an additional clustering or sorting step.

As shown in Table 1, a few attention accelerators have been
proposed in recent years that apply co-designed sparsity patterns
[19,31,57]. FTRANS [31] compresses weights of Transformer-based
models with a block circulant matrix-based representation. It does
not involve any attention-specific sparsity and still computes the
full attention matrix. As FTRANS requires computation in the fre-
quency domain that involves complex values, the actual hardware
speedup is low. A3 [19] approximates attention by greedily search-
ing for key vectors that are likely to be relevant to the current query.
However, this approach provides limited computation saving be-
cause it gives a rather rough prediction which harms accuracy at
high sparsity. SpAtten [57] performs structured activation pruning
by removing entire attention heads and tokens. However, the re-
maining heads and tokens may still contain redundant attention,
leading to low sparsity.

In summary, all these works achieve limited speedup because of
low sparsity or hardware inefficiency. The unstructured dynamic



MICRO 21, October 18-22, 2021, Virtual Event, Greece

LT

low-bit
quantization

PE array size

- > - c —
Find iR . — Each row has
Pattern S | S 5| Attention | — similar
S—| 3¢ mask — number of
g—|~ 3 —
— °© s

constraint nonzeros.

Software design

Sparsity prediction

ﬁ Unified computation dataflow

Score-stationary dataflow

4

input & | Keys | | Values |
sequence ‘g PE PE_| PE PE_|
© g scores scores scores scores
. @ =
K:Itgr:(t § é PE_| PE PE pe|Output

-E | scores | | scores | | scores | | scores "—’

1]

T

Ligiang Lu, Yicheng Jin, Hangrui Bi, Zizhang Luo, Peng Li, Tao Wang, and Yun Liang

Values

22222,

Keys

22222,

structured
blocks

ndino

Queries
Iy
INERRY

Pack and split SDDMM

Reconfigurable design allows
1. arbitrary nonzero distribution in a block

2. different computation patterns

SpMM

One block -> one execution on SA
PEs have balanced workload

Reconfigurable SA

Reconfigurable PEs

Figure 2: Sanger framework overview.

patterns of software-only approaches exhibit higher sparsity com-
pared to co-design approaches, but their irregularity makes it hard
to achieve adequate acceleration. On the other hand, existing hard-
ware accelerators adopt fixed architecture design, which strictly
limits the sparsity patterns they support and leads to low hardware
efficiency. For example, SpAtten [57] only supports coarse-grained
token-level pruning because its computation engine is optimized
for dense vector-matrix multiplication. In this paper, we propose a
fine-grained pruning approach that poses minimal limitations on
sparse patterns and a matrix encoding strategy that performs load
balancing dynamically. We also propose a reconfigurable architec-
ture design to flexibly support such sparsity.

3 SANGER OVERVIEW

Figure 2 presents the overview of our proposed framework Sanger,
which consists of an attention pruning algorithm and a reconfig-
urable attention accelerator. At the software level, we use quantized
queries and keys to calculate a sketchy prediction of the attention
matrix, which is then pruned via binary thresholding. The resulting
attention mask exhibits an unstructured sparsity pattern as it is dy-
namically determined by the input queries and keys. To regularize
the computation and improve hardware efficiency, we propose an
encoding scheme to pack and split the attention mask into multiple
structured blocks with balanced workloads. Finally, the dense atten-
tion mechanism is transformed to SDDMM and SpMM operations
with the sparse blocks serving as their sample masks. Section 4
presents the details.

At the hardware level, Sanger features a unified score-stationary
dataflow that supports both SDDMM and SpMM operations on one
systolic array. Based on this dataflow, we design a reconfigurable
systolic array that processes one block at a time. The input entry of
PEs can be dynamically configured to receive queries, keys, values
with different indices. Such reconfigurability allows flexible nonzero
distribution in a block, which helps to improve the compression
ratio during pruning. Section 5 and 6 present the details.

In the end-to-end implementation, we first train the model
weights under sparsity pattern constraints, including PE array size,
sparse block size, and the maximum number of nonzeros in each
row. The weights are dense and fine-tuned to make it easier to form

Algorithm 1: Sparse Attention Algorithm Overview

Input: Q, K, V are queries, keys and values
T is the threshold for binarization
Output: Z is the output of the attention mechanism
1 1. Quantized prediction of the attention matrix

2 Q =4bit - quant (Q)
3 K =4bit — quant (K)
1 S =softmax (GEMM (Q, K))
2. Generate attention mask with binary thresholding
6 M =binary — thres (ﬁ, T)
7 3. Packing and splitting mask into structured blocks
8 M = pack —split (M)
9 4. Compute sparse attention
10 S =softmax (SDDMM (Q, K, M))
1 Z=SpMM(S,V)

-

our sparsity pattern. In the inference phase, Sanger accelerator
takes weight matrices from training and token sequence as its input
to calculate the queries, keys and values. Sanger generates sparse
masks dynamically with a hardware pipeline which implements all
the steps in the pruning algorithm, including quantization, thresh-
olding, and encoding. Then, the sparse mask is executed efficiently
on the reconfigurable systolic array.

4 SOFTWARE PRUNING FOR SPARSE
ATTENTION

To exploit the dynamic sparsity in the attention mechanism, we face
a few challenges. First, dynamic sparsity cannot be pre-determined
before inference, and its pattern varies drastically among samples.
Second, different from the ReLU sparsity which explicitly zeroes out
activations, the softmax operation induces implicit sparsity, where
all positions are assigned nonzero values. Third, dynamic sparsity
usually exhibits highly unstructured patterns, posing another chal-
lenge for hardware implementation. To address these issues, we
devise an algorithm to predict the sparse pattern for each input
sample via quantized approximation, extract the implicit sparsity



Sanger: A Co-Design Framework for Enabling Sparse Attention using Reconfigurable Architecture

via binary thresholding, and re-arrange the unstructured pattern
into a hardware-friendly format via packing and splitting.

Algorithm 1 presents a step-by-step overview of our approach.
Given queries Q, keys K, and values V, we first quantize the Q
and K matrices to 4-bit and compute a low-bit prediction S of the
attention matrix via dense general-purpose matrix multiplication
(GEMM) and softmax. In the second step, we extract implicit spar-
sity from the dense attention matrix $ by zeroing out small attention
weights according to a threshold T. The output of this step is a bina-
rized attention mask M with unstructured sparsity. Next, through
packing and splitting, we transform M into small blocks with bal-
anced structures for the sake of hardware efficiency, with each of
them corresponding to one execution on the systolic array. Finally,
the inference of attention is transformed to SDDMM and SpMM
operations.

4.1 Predicting Attention Matrix

Unlike weights and input activations, the attention matrix is the
intermediate results of the attention mechanism that cannot be
determined before execution. We propose to derive dynamic spar-
sity from a quantized prediction of the attention matrix, thereby
avoiding computing the full version. More clearly, we calculate the
quantized prediction of the attention matrix S as follows

$ = Softmax (a—l (QO@QEK)T) /«/E)

where Q () is a quantization operator that maps input buffers to
low-bit while Q! (-) is the corresponding de-quant operator that
transforms low-bit outputs back into high precision. We choose
symmetric linear quantization as our quantization operator Q to
strike a balance between accuracy and efficiency: it provides a
higher precision than directly fetching the MSBs of fixed-point
buffers and is much easier to implement than k-means quantization.
With its computation shown below, symmetric linear quantization
can be implemented as a multiplication by a scaling factor y and
a rounding bit-shift. We implement the de-quant operator Q! in
the same way.

Q (x) = round (yx)

Following the quantization-aware training scheme, we simulate
quantization during training to accommodate quantization error
and collect range statistics of Q, K from training data. During train-
ing, we approximate gradients of the non-differentiable operator Q
using Straight-Through Estimator [3]. In our experiments, we quan-
tize all Q and K matrices to 4-bit, so the computational overhead is
around 1/16 of the original 16-bit dense attention.

4.2 Generating Attention Mask

As shown in Figure 3, after obtaining a quantized approximation
S of the attention matrix, we generate a binary attention mask M
according to the sparsity pattern it exhibits. While most of the ex-
isting works on leveraging output sparsity focus on ReLU-induced
sparsity [5, 50], we deal with the implicit sparsity induced by soft-
max in the case of attention mechanisms. Typically, vanilla softmax
assigns near-zero values to a large part of attention scores because
it is a smoothened version of the argmax operator. However, unlike
ReLU that explicitly zeroes out activations, softmax never produces

MICRO 21, October 18-22, 2021, Virtual Event, Greece

x £ a
08 3 5w
£35s588¢8
The
4-bit quick [~ | Binary
GEMM brown || threshold
— fox [ [] —
Softmax  jumps Partition in
over col-dim
lazy @
ot |
Queries  Keys Quantized attention matrix Partitioned attention mask
Packing : Splitting
— | —
@ e

Skip empty sub-rows Split over-full sub-rows

Structured blocks
Figure 3: Encode the attention mask into fine-grained struc-
tured blocks.

exact zeros. This feature of vanilla softmax makes its output spar-
sity less easy to utilize directly and harms the prediction accuracy
of models based on soft attention.

To extract the implicit sparsity, we apply a binary threshold to
the predicted attention matrix. We empirically observe that this
simple technique achieves a high compression ratio and overall
accuracy. As shown below, the binarization operator is a shifted
Heaviside step function. In our experiments, the threshold T € [0, 1]
is a global hyper-parameter applied to all attention heads and can
be tuned to trade-off between sparsity and accuracy.

1, if S'ij >T
0, otherwise

M;j = binarize (ﬁij,T) = {

4.3 Packing and Splitting Attention Mask

Given the attention mask M from binary thresholding, the original
GEMM of Q x KT becomes a sparse SDDMM operation, which
means we can skip computing the output elements that M masks
out. Unfortunately, the sparsity in SDDMM could not directly trans-
late into actual speedup because the unstructured pattern of M
makes it not amenable to efficient hardware implementation. In
contrast to weight pruning [26, 70], it is non-trivial to enforce fine-
grained structural constraints on activations. Besides, the overhead
of packing/encoding sparse activation matrices occurs at every
input sample rather than once before deployment.

Facing these challenges, we refrain from directly regularizing
activation patterns and design an efficient encoding strategy that
re-arranges the unstructured attention mask into a load-balanced
format. As shown in Figure 3, our encoding strategy consists of
three steps: partitioning, packing and splitting. Given an atten-
tion mask, we first partition it into sub-matrices along the column
dimension, with each having the same width as the number of
vertical input ports of the PE array. Then we pack each sub-matrix
by skipping the sub-rows that contain no nonzero elements. For
example, we skip the empty sub-rows as highlighted in the bottom
left. Next, to make sure the amount of nonzeros in each sub-row
does not exceed the PE number in each row of the PE array, we
split the overfull sub-row into multiple rows. For example, we split
the second sub-row in the left-top block into two sub-rows. Finally,
the attention mask is transformed into multiple structured blocks,
with each block having a similar number of nonzeros in each row.



MICRO 21, October 18-22, 2021, Virtual Event, Greece

partial sums of S(i,j) are stationarily accumulated

A
KOk 1§ K(Lk) K(2,k)
H%HEHI'H EREN
Q(O,k) P PE PE PE
[T T [s00 |37 [s00 |—1[502] (s |
R T T
Q(1,k) PEN] PE PE S{ij)=exp(S(iJ)
[T T [swo]—[swy [—[sw2] i)=exp(S(i,j
v v v
Q(Zlk) PE PE PE PE
T | S(2,0) |— | s(2,1) |_.| S(2,2) | STl
STEP®D STEP @

Ligiang Lu, Yicheng Jin, Hangrui Bi, Zizhang Luo, Peng Li, Tao Wang, and Yun Liang

accumulate exp(S(i,j)) with different j for softmax
partial sums of Z(ij) are righttforward accumulated

Figure 4: Dense score-stationary dataflow.

5 HARDWARE DATAFLOW

Our software pruning technique only sets the constraints of the
proportion of nonzeros in each row. However, the actual nonzero
distribution can be arbitrary, leading to irregular data access of
SDDMM and SpMM operations. Besides, the sparsity occurs in the
score matrix, which is both the output of SDDMM operation and
the input of SpMM operation, making it challenging to decode the
sparsity to cooperate with dense queries, keys, and values. Our
hardware design uses a unified dataflow, which takes queries, keys,
values, and a mask that indicates the sparsity pattern as inputs. This
dataflow unifies the SDDMM and SpMM operations by keeping
sparse scores stationary in the PE until the computation is finished,
namely score-stationary dataflow. This design can effectively elimi-
nate the decoding overhead by keeping the score in place. In the
next, we first present the dense design of this dataflow in Section
5.1 and then the sparse score-stationary dataflow in Section 5.2.

5.1 Dense Score Stationary Dataflow

As shown in Figure 4, the complete dataflow is divided into four
steps, where the first step and the third step are responsible for
the matrix multiplication of Q x K and S X V, respectively. For
simplicity, we assume that each PE has the functionality of one
multiply-and-accumulate (MAC) operation. In STEP 1, the query
matrix and key matrix are multiplied to generate a score matrix
using a systolic array. In this step, each row of the query matrix is
horizontally mapped to one PE row, while the row of the key matrix
is vertically sent to the PEs of the systolic array. The computation
of the first step can be regarded as a vector outer-product between
one row from the query matrix and one row from the key matrix.
Each PE calculates the partial sum of the same score element and
iteratively accumulates it until the calculation is finished (iterative
accumulation). In STEP 2, each PE conducts an exponential oper-
ator ¢5(-)) to prepare for the softmax operation. In STEP 3, the
systolic array is reused to multiply the score matrix with the value
matrix. As the scores have been stored in the PE, only the column of
the value matrix vertically traverses across the PE array. Different
from STEP 1, each row of the PE array here is responsible for a
vector dot-product between one row from the score matrix and one
column from the value matrix. Scores are kept stationary in the PEs
in STEP 3, while the results of multiplying scores and values are
accumulated to the right (forward accumulation). For example, the
result of S(0,0)*V(0,0) is moved to the right PE to be accumulated

V(k0) E EV(k,l)E iwk,z)E
PE _._ PE __ PE - 2(0.))
[s00 ]F==4[s0.0 |}==-[s0,2) ||=====" cliy
T T T )
2(1,j)
pE [ pe | Pt
[swo) JfF==1[s@) |} ==[s@2) ]{==- ---» (TTT]
v v v )
PE PE PE ; Z(2)
o |F--1[sen]t--4[s@2) ] |--+4--+\dY
STEP @ STEP @
l | l
Py PE(0,0) PE(0,1)
sparse scores _“‘\__]___/' S(0,1) 5(0,2) N [ -
PE(1,0) /,»"‘L“x‘ /—"‘L\\‘ PE(1,1)
1| s(1,0) 1 ‘ | TE)
J— PE(2,0) I PE(IZ,l)
N s(2,1) I "Il523)
-+
block size = 4x4 PE(3,0) PE(3,1) {
nzineachrow=2 | ,Wl )_,ml_ﬁ __________ g

PE(3,0) cycle 3

|
S(3,0) +=>< K(0,0)J l$(3,2) +=x K(Z,OJJ

data transfer between PE(3,0) and PE(3,1) needs to be delayed for 1 cycles

Figure 5: Sparse score-stationary dataflow.

with S(0,1)*V(1,0). The final result of dot-product is gathered at the
rightmost PE and sent to the division module. Note that we also
calculate the sum of ¢5(>/) in each row of the score matrix in this
step. In STEP 4, the results of the PE array are divided by the sum

S(i

of e5(:7) for the normalization in softmax function.

5.2 Sparse Score Stationary Dataflow

The sparsity of attention occurs in the intermediate matrix (scores)
while the input matrices are still dense (queries, keys, values). The
irregular sparsity makes it hard to leverage the parallelism of the
systolic array, as systolic arrays exhibit highly structured data ac-
cess. To effectively exploit the sparsity, we propose a sparse score
stationary dataflow extended from the dense version. The sparse
dataflow shares the same data access of queries, keys, values as the
dense dataflow and also keeps each score element stationary in the
PE.

In the dense dataflow, the score coordinates for each PE are
derived from the indices in the matrix. However, in the sparse
dataflow, the sparse scores in the same row are packed and then
sent to one row of PEs. To rectify the data movement, we insert
bubbles between PEs, as shown in Figure 5. Each bubble can be
regarded as a virtual PE, which only makes the data stall for one
cycle. The number of bubbles between PEs follows the distribution
of zeros in the sparse block. For example, in a 4 X 4 sparse block with
each row has 2 nonzero scores, the scores are mapped to a 4 X 2 PE
array, as shown in Figure 5. In the access pattern of systolic arrays,
the data of Q(3,0) is required to multiply with K(0,0) in PE(3,0) at



Sanger: A Co-Design Framework for Enabling Sparse Attention using Reconfigurable Architecture

query regs

MICRO 21, October 18-22, 2021, Virtual Event, Greece

output

4[ RTg ng RTg ]_‘ queries
[t e o L
T—

— keys / values rigs|

eg Reg [

—
=1
EJ
o
3
=1
=

-

— 3
’—m

@

o

T
e | e .
RePE RePE piv b output  |—_____ \
t——F

keys / values

Reg

queries

non-normdlized results

c5

bubble
controller

keys / values

sum of EXP(S(i,j))

(a) Flexible PE array and data access of queries, keys, values

(b) The reconfigurability of RePE design

Figure 6: Reconfigurable systolic array. The C1-C5 are reconfigurable modules during runtime. C1 determines the choice
between queries and scores. C2 alternates the data source between keys and values. C3 is responsible for iterative accumulation
(for SDDMM) and forward accumulation (for SpMM). C4 decides the result destination of the adder. C5 controls the access delay

of output. RePE: reconfigurable PE.

(b) Activated datapath for SpMM

Reg Reg. Reg Reg —> — il
- —
& 1 @ @
| [reg [Reg [Ree [CReg [ree]
Ay & = ) e H— — e
= Ehw &-bl=m
(a) Activated datapath for SODMM [Reg Reg [Creg [Creg [reg
Reg. Reg +—> — ——
d [reg [Creg Reg
"o : o —
: ; : -
< i = . 3 .
ey OO ¢
i
Reg Reg Reg Reg Reg Reg Reg Reg
e
R

(c) An end-to-end datapath configuration for the sparsity pattern in Figure 5

Figure 7: Configuration details and examples of RePE.

cycle 3 and multiply with K(2,0) in PE(3,1) at cycle 5. Therefore,
one bubble is inserted to delay the data transfer for 1 cycle.

One of the objectives of score-stationary dataflow is to maximize
the reuse opportunities of the score matrix on chip during com-
putation. By doing this, we can avoid the data transfer of scores,
which further eliminates the decoding overhead when the score
matrix is sparse. The queries, keys, and values are still dense matri-
ces, which can be directly streamed to the PE array using simple
FIFO logic. Another advantage of score-stationary dataflow is to
unify the computation of SDDMM and SpMM on a single systolic
array, which helps to save the total area of the accelerator. Prior
approaches use multiple pipeline stages to separately implement
each step of attention mechanism on different hardware modules
[19, 57].

6 ARCHITECTURE OPTIMIZATION

The score-stationary dataflow requires different data access and
accumulation schemes at different stages. Therefore, it is necessary
to design a reconfigurable architecture. There are two challenges for
areconfigurable architecture design. 1) To enable the sparsity pattern
with uncertain nonzero distribution, the connection between input
data (Q, K, V) and PEs needs to be flexible. For example, in Figure 5, PE
(0,0) receives the second column of the key matrix. However, when
the pattern changes, it may receive other key columns. 2) SDDMM

and SpMM operations differ in the data transfer and accumulation
scheme of partial sums. The streaming data is queries and keys for
SDDMM, but partial sum of the output for Sp)MM. Besides, SDDMM
iteratively accumulates partial sums in the same PE, while SpMM
requires to forward accumulate results from different PEs in one
row.

6.1 Reconfigurable Systolic Array Design

As data (for Q, K, V) are stored in a dense matrix that is inherently
different from sparse scores, we decouple the data registers of them
from the PE. These registers are connected one by one, which
transfer the data in traditional systolic array manner. To support
flexible distribution of nonzeros, each PE is connected to all the
registers in one row via a multiplexer controller. This multiplexer
is configured by the sparsity pattern to determine which query /
key / value is sent to the PE, as shown in Figure 6 (a). On the other
hand, the number of PEs in each row limits the maximum number
of nonzeros in each sparse row. For example, Figure 6 (a) shows a
2 X 2 PE array with two horizontal ports and four vertical ports,
which can handle a 2 X 4 sparse block with each row has less than
50% nonzeros.

The second challenge is addressed by inserting reconfigurable
control modules in the PE. As shown in Figure 6 (b), modules are
reconfigurable when the systolic array alternates between SDDMM



MICRO 21, October 18-22, 2021, Virtual Event, Greece

and SpMM. Clearly, multiplexer C1 passes queries in SDDMM of
Q x K while it sends the score (after exponential operator) to the
multiplier in the SpMM of S X V. Similarly, multiplexer C2 is used
to choose the data source between keys and values. C3 is inserted
to choose the input data of the adder. C3 selects the partial sum of
the score in SDDMM operation to enable iterative accumulation.
In SpMM stage, it selects the multiplication results from the pre-
vious PE to conduct forward accumulation. C4 decides the result
destination of the adder.

As systolic arrays need to follow strict data access rules to ensure
correctness, we introduce a bubble controller C5 in Figure 6 (b),
whose operation is to set the data transfer delay between adjacent
PEs in one PE row. In the third step of Figure 4 (SxV), the bubble
controller is activated. Since the values are dense, the transfer of PE
results is delayed by a proper number of bubbles to ensure correct
data access.

Figure 7 presents a detailed example. Figure 7 (a) and (b) draw
the activated datapath when performing SDDMM and SpMM op-
erations. For SDDMM, queries and keys are selected according to
the sparsity pattern. Then the multiplication results are gathered
in the same PE. After a complete score is computed, we conduct an
exponential operator for the softmax function. For SpMM, values
are loaded to multiply with scores in each PE, where the results are
accumulated across different PEs. Note that the exponential results
of scores are also accumulated at the same time for the final normal-
ization. Figure 7 (c) shows an end-to-end datapath configuration
for the sparsity in Figure 5. Here, we only picture the activated
connection between registers and PEs. In the first row of the sparse
block, the first nonzero is located at the second element, making
the second query register connected with the first PE. Such nonzero
distribution also determines that the first PE is connected with the
second register when calculating the output. Besides, the configu-
ration of the bubble controller depends on the number of zeros in
between. For example, there are two zeros between nonzero scores
in the second row in Figure 5, which sets a 2-cycle delay in the
bubble controller when accumulating the output in the second PE
row in Figure 7 (c).

6.2 Implementation Details

The first stage of the attention mechanism is to calculate queries,
keys, and values using three weight matrices. This stage is a dense
matrix multiplication, which is directly mapped on our systolic
array design. As mentioned in Section 4.2, the attention mask is
generated based on the MSB of queries and keys. We implement this
generation in a pre-process module that contains a 4-bits multiplier
array. There is an encode module to pack and split the attention
mask into sparse blocks. As pack removes an entire row in the
attention block, the corresponding query vector will be skipped
in SDDMM operation. Split copies the queries in the PE temporal
registers before the computation of SDDMM (Q X K). At the end of
SpMM (S x V), each two adjacent PE rows are connected with an
adder to merge the results from the split query vectors, which only
requires very small hardware logic. Modules are fully-pipelined to
achieve high throughput. We use a similar implementation of the
exponential operator as [58], which firstly converts e* to 2%/1n2
and uses a look-up table for approximation.

Ligiang Lu, Yicheng Jin, Hangrui Bi, Zizhang Luo, Peng Li, Tao Wang, and Yun Liang

Table 2: Sanger area and power breakdown.

Modules Parameter Area Power
(mm?) (mW)
Pre-process 64 X 64 4-bits multiplier 1.467 461.9
module
Pack & split | 64 x 64 1bit mask 0.056 1.610
module 4KB mask FIFO
Systolic array | 64 vertical ports 8.47 2243
64 X 16 RePE array
64 EXP modules
Memory 128KB query buffer 6.912 57.81
128KB key buffer
128KB value buffer
128KB output buffer
Total UMC 55nm: Area = 16.9 mm?Z,Power = 2.76W

7 EXPERIMENTS

7.1 Experimental Settings

Benchmarks. We evaluate our method on BERT [16], GPT-2 [45],
and BART [30]. Our evaluation datasets include eight tasks from the
GLUE benchmark [56] (text classification), SQuAD v1.1 [47] (ques-
tion answering), and CLOTH [62] (long-context cloze which is de-
liberately introduced to evaluate our method on longer sequences).
We exclude the problematic WNLI task from GLUE following [16].
Similar to [47, 56, 62], we evaluate models using Matthew’s correla-
tion for CoLA, Pearson/Spearman correlation for STS-B and EM/F1
for SQuAD. For other tasks, we report accuracy or accuracy/F1 on
the validation set. All these metrics are positively correlated with
model accuracy.

Software pruning implementation. Our code is based on the
BERT implementation by NVIDIA [39] and the evaluation code
is from Hugging Face’s Transformers library [60]. All models are
implemented and executed using PyTorch v1.7.1 [42]. We use MKL-
DNN [23] and CuDNN [10] as operator libraries for Intel CPUs and
NVIDIA GPUs. Since our method does not require pre-training, we
directly fine-tune a pre-trained checkpoint on downstream tasks.
We use a pruning threshold of 2e-3 for SQuAD and CLOTH, and
2e-2 for the remaining GLUE tasks. For all tasks in GLUE, we use a
batch size of 32 and a learning rate of 2e-5. For SQuAD, we use a
batch size of 12 and a learning rate of 3e-5. For CLOTH, we use a
batch size of 8 and a learning rate of 1e-5. We train all models with
enough epochs until convergence.

Hardware implementation. The Sanger accelerator consists
of a pre-process unit to generate the attention mask, an encoding
module to generate structured blocks, and a reconfigurable systolic
array for computation. The design is written in Chisel hardware
description language [1]. We use Chisel to generate Verilog RTL.
Then we use Synopsys Design Compiler to estimate the chip area
and total power under the UMC 55nm technology. The synthesized
frequency is 500MHz. Table 2 provides the detailed design parame-
ter and area/power breakdown for Sanger. We use Cadence Innovus
16.13 for placement and routing. Each PE row supports up to 0.25
(16/64) sparsity in rows of a 64 X 64 sparse block. To evaluate the
performance of Sanger, we developed a cycle-accurate performance
model with the assumption of a 128 GB/s HBM bandwidth.

Platforms for comparison. We compare our framework with
modern hardware accelerators, including server GPU (NVIDIA
Tesla V100 PCIe 32GB), server CPU (AMD Ryzen Threadripper



Sanger: A Co-Design Framework for Enabling Sparse Attention using Reconfigurable Architecture

MICRO 21, October 18-22, 2021, Virtual Event, Greece

EMNLL EMRPC ®mQQP mSST-2 MSTS-B MQNLI MColA MRTE WSQUAD MCLOTH M Average
50 200
40 160
5
£ 30 ‘G 120
3 5
‘% 20 P_>5 80
10 S 40
0 0
GPU GPU  CPU | GPU  GPU  CPU | GPU  GPU  CPU GPU GPU CPU | GPU GPU CPU | GPU GPU  CPU
FP32  FP16 FP32  FP16 FP32  FP16 FP32  FP16 FP32  FP16 FP32  FP16
BERT GPT-2 BART BERT GPT-2 BART
Figure 8: Speedup and energy efficiency improvement over GPU and CPU on BERT, GPT-2, BART benchmarks.
Table 3: Pruning results on different tasks. Acc. and S means accuracy and sparsity.
MNLI | MRPCacc/F1 | QQPacc/F1 | SST-2 STS-B ONLI | CoLA | RTE | SQUADEM/F1 | CLOTH
Baseline Acc. | 831 86.0/90.2 90.6/87.3 90.6 | 89/88.6 | 90.7 54.2 | 675 81.4/88.6 79.1
Longformer|[2] Acc 82.8 82.8/87.9 90.4/87.0 90.7 87.8/817.5 89.9 50.5 64.3 80.7/87.6 77.9
& S - - - - - - - - 034 0.22
BERT(16] Bigbird[65] Acc. | 825 79.7/85.8 90.3/86.9 90.9 | 88.1/87.6 | 89.8 497 | 68.3 80.1/87.3 76.6
& S - - - - - - - - 034 022
Sanger Acc 83.2 85.0/89.6 90.5/87.1 91.1 88.8/88.4 90.8 54.2 68.2 81.0/88.4 78.8
& S 0.109 0.115 0.172 0.229 0.313 0.088 0.331 0.087 0.127 0.158

3970X). We measure the performance of GPUs using PyTorch with
cuBLAS 11.2, and CPUs using PyTorch MKL 2020.0.2. For Nvidia
GPU and AMD CPU, we measure power consumption via nvidia-
smi and reading RAPL counters, and execution latency using CUDA
Event and native Python. On GPU platforms, we choose to evaluate
the performance using CuBLAS not CuSparse on sparse models
for two reasons. First, CuSparse library is designed for high perfor-
mance computing (HPC) workloads with extremely high sparsity
(<0.0001), e.g., Netflix [4] (5.7e-6 sparsity, recommendation sys-
tem), Amazon0312 [38] (1.9e-5 sparsity, Co-purchase network). The
sparsity in Transformers is only around 0.1, and thus CuSparse is
inefficient for this case. For example, for the CLOTH task (sequence
length of 512 and 0.15 sparsity), CuSparse takes similar latency as
CuBLAS. Second, we deal with dynamic sparsity in this work. If
we use CuSparse, it requires to transform the sparse data to sparse
format (e.g. CSR) on the fly, which takes extra time. In many cases,
the transformation overhead is as long as executing the kernel.

We also compare to the state-of-the-art sparse attention accel-
erators, including A3 [19], SpAtten [57], FTRANS [31]. For a fair
comparison, we scale the number of multipliers of all accelerators
to 128 (16 x 8 RePE array with 16 vertical ports of Sanger) and
assume the frequency is 1GHz. For a fair comparison, we take both
pruning technique and architecture design into account, we calcu-
late the effective throughput of the accelerators, which we define
as architectural throughput X computation saving.

7.2 Pruning Results

We obtain the attention mask S by applying a binary threshold on
a low-precision estimation P of the attention matrix. Compared
to static and data-dependent patterns, the sparsity patterns we
generate are conditioned on individual input samples. Such dynamic
patterns can better adapt to data, thereby improving the sparsity-
accuracy curve.

The results on BERT [16] are shown in Table 3. The column
headings are NLP tasks. For a given Transformer network, it can be
applied to multiple tasks. The row labeled "baseline" corresponds
to the original BERT-base (with dense attention) for these tasks.
we compare our method with two common sparse patterns: long-
former [2] and bigbird [65]. While these patterns are originally
proposed for processing long sequences (e.g., text length 4096), we
scale them for standard benchmarks with shorter contexts. Both
patterns have 1 global block and 3 sliding window blocks per row
in our reproduction, and bigbird has 1 additional random block.
We also scale down their block size to 32 to accommodate reduced
sequence lengths. We evaluate all three methods using the same ini-
tial checkpoint and dataset as in our experiments. Longformer and
bigbird are fine-tuned on the same pre-training dataset as BERT to
recover accuracy before training on downstream tasks. For all tasks,
we report task-specific metrics and the corresponding pruning ratio
of each pattern.

For BERT, we achieve the same level of accuracy as the dense
baseline while achieving 3.0 - 11.5X computation saving. For some
tasks such as SST-2 and RTE, Sanger even outperforms the dense
baseline slightly, which can be partly attributed to better concen-
tration of attention [68] because of thresholding. We also notice
that tasks of longer sequence length involve more redundancy, e.g.,
SQuAD and CLOTH compared to CoLA and STS-B. In the com-
parison, longformer and bigbird obtain a lower compression ratio
on SQUAD and CLOTH, and fail to produce sparsity on the GLUE
tasks because the typical sequence lengths of these tasks are al-
most comparable to their block size. Besides, they also incur more
significant accuracy degradation in most tasks.

We also apply our pruning technique on GPT-2 [45] and BART
[30] benchmarks on GLUE tasks. Similar results are observed. Over-
all, Sanger achieves 0.15 - 0.35 and 0.23 - 0.54 sparsity within 0.5%
accuracy loss for GPT-2 and BART, respectively. The lower sparsity



MICRO 21, October 18-22, 2021, Virtual Event, Greece

3000

1 throughput provided by hardware
I throughput provided by exploiting sparsity

Total speedup  x4.32

~
G
S
3

2000

1500

throughput
1000 degradation

improved by
reconfigurable
architecture

Sparse model on Sparse model on Sparse model on
dense systolic array Sanger w/o pack&split ~ Sanger with pack&split

improved by
pack & split

Effective throughput (GOP/s)

@
<)
3

1.72X

Dense model on
dense systolic array

Figure 9: Performance breakdown

in GPT-2 and BART is probably due to their structural features,
requiring additional tuning compared to BERT. For example, half
of the attention matrix in the decoder is masked off, leaving less
room for compression.

7.3 Comparison with CPUs and GPUs

Figure 8 shows the speedup of Sanger over AMD Ryzen CPU and
V100 GPU on 10 language processing tasks. On the GPU platform,
we evaluate FP32 data precision and FP16, where FP16 uses tensor
cores for acceleration. For BERT, GPT-2, BART benchmarks, on
average, Sanger achieves 4.71X, 6.45X, 3.76X speedup over GPU-
FP32, 4.64X, 6.88X, 3.94X speedup over GPU-FP16, and 22.7X, 13.3X,
13.2X speedup over AMD Ryzen CPU. For energy-efficiency, Sanger
is 48X, 35X, 113X better compared to GPU-FP32, GPU-FP16, and
Ryzen CPU. The high speedup comes from the reduced computa-
tion and the optimized architecture of Sanger that can effectively
leverage the sparsity in the attention mechanism. The performance
of GPU-FP16 is worse than GPU-FP32 in some tasks due to the
limited input sequence length and batch size. The performance
with tensor core improves with larger workloads. For example, for
the first 8 tasks, the input sequence length is up to 128, leading to
the under-utilization of GPU tensor cores. For SQuAD and CLOTH
tasks, the sequence length is 384 and 512. Therefore, GPU-FP16
outperforms GPU-FP32 in these two tasks. Sanger processes 64
queries and 64 keys in parallel, which means the computing re-
sources are nearly fully-utilized in these tasks. We also observe that
the speedup of Sanger does not perfectly scale with the sparsity.
For example, on BERT, the sparsity in the MNLI task is 0.208, which
is 2.51X over the CoLA task (0.083 sparsity). However, the speedup
of CoLA (9.58X) is only 2.18X of MNLI (4.39X). This is because a
higher sparsity means less nonzeros in each row, which further
reduces the PE utilization.

Figure 9 gives the performance breakdown of Sanger. The base-
line is executing a dense model on a dense systolic array. Af-
ter pruning, the dense architecture cannot effectively leverage
the sparsity, leading to throughput degradation. With the score-
stationary dataflow and reconfigurable design, Sanger achieves a
2.89X speedup. Packing and splitting lead to a further 1.72X speedup
due to balanced workloads. The software and hardware together
achieve 4.32X speedup compared to baseline.

7.4 Comparison with Other Accelerators

Table 4 compares Sanger with three state-of-the-art sparse atten-
tion accelerators in both software design and hardware design. The
comparison is based on the BERT model that is supported by all

Ligiang Lu, Yicheng Jin, Hangrui Bi, Zizhang Luo, Peng Li, Tao Wang, and Yun Liang

accelerators (SQUAD task). Sanger shows the highest computation
saving at the software level thanks to our fine-grained pruning
technique and reconfigurable architecture. In comparison, A3 in-
troduces a pre-processing step and uses a rough sparsity prediction
technique which harms model accuracy under aggressive prun-
ing. SpAtten uses a coarse-grained approach for attention pruning
where it prunes entire columns and rows progressively. Such struc-
tural constraint limits the level of sparsity it can exploit in a similar
way to traditional weight pruning. FTRANS [31] leverages the
sparsity in the weight matrix used to generate queries, keys, and
values with input sequence. We calculate the computation saving
of FTRANS under 4 X 4 circulant matrix as it shows no accuracy
loss. With a circulant matrix representation, the vector-matrix mul-
tiplication is equivalent to element-wise vector multiplication in
the frequency domain. It takes at least 3 multipliers to perform
complex value multiplication. Therefore, the computation saving
of FTRANS is 1.33X (16/12).

From the hardware design aspect, Sanger outperforms A3, SpAt-
ten, FTRANS with 2.39X, 1.47X, 3.11X speedup respectively. SpAt-
ten, and FTRANS apply fixed computing modules, limiting the
pattern of sparsity strictly. While Sanger is composed of a reconfig-
urable systolic array with more flexibility during pruning, allowing
higher effective throughput. SpAtten generates sparsity by a top-K
engine that makes the token indices irregular. Therefore, SpAtten
requires a large reconfigurable adder tree to gather the partial sums.
A3 applies candidate selection to find the most important atten-
tions, which requires more area than computing modules. FTRANS
needs to inversely transform the results from the frequency domain
to the time domain, which is designed as an inverse Fast Fourier
Transformation (IFFT) module.

7.5 Pattern Visualization and Impact of
Packing

In this section, we study how packing and splitting impact hard-
ware efficiency. Table 5 visualizes the sparsity pattern on each
downstream task with or without our encoding scheme. These
patterns exhibit different pixel granularity due to different input
sequence lengths. For example, the attention matrix of MNLI is
16 X 16, while it is 384 x 384 for CLOTH. To demonstrate the benefit
of our encoding scheme, we also list the PE utilization for each
sparsity.

The encoded pattern is generated under the constraint that the
maximum percentage of nonzeros in each sub-row of blocks is
limited to 25%. We observe that all original sparsity patterns show
uneven nonzero distribution, leading to low PE utilization (0.36 -
0.56). After packing and splitting, the mask becomes more struc-
tured, making the utilization increase to 0.56 - 0.72 with an average
improvement of 1.5X. Because the packing and splitting are per-
formed in the row dimension, the resulting attention masks have
the same width as the original matrix while varies in their heights.
Encoded attention masks of the first nine tasks exhibit thin-tall
shapes because their short sequence lengths lead to denser patterns
with fewer empty sub-rows to be packed. In comparison, the masks
of CLOTH show short-fat shapes because their sequence lengths
are much longer and have more zeros to be skipped.



Sanger: A Co-Design Framework for Enabling Sparse Attention using Reconfigurable Architecture

MICRO 21, October 18-22, 2021, Virtual Event, Greece

Table 4: Comparison with existing sparse attention accelerators.

Attention Software design Hardware design
accelerators Sparse Pruning Computation | Computing Sparsity Sparsity Target Effective
matrix technique saving modules encoding decoding device throughput
A’ attention greedy iterative 1.72X dot-product Candidate Post-Scoring ASIC(40nm) 221 GOP/s
(unstructured) approximation unit Selection Selection
SpAtten attention head pruning 3.00X parallel top-k reconfigurable ASIC(55nm) 360 GOP/s
(structured) token pruning matrix mul engine adder tree
FTRANS weight circulant matrix 1.33X element-wise FFT IFFT FPGA(16nm) 170 GOP/s
(structured) vec-mul
Sanger attention prediction + 5.90X reconfigurable Prediction none ASIC(55nm) 529 GOP/s
(structured) thresholding systolic array & pack/split
Table 5: Sparsity pattern visualization.
STS-B ONLI CoLA CLOTH
N
.
I i
No packing \
PE utilization 0.360 0.330 0.587 0.367 0.452
|
-
D N
s
- -
ms .
—
—a —
Use packing Lu— E
& splitting
(constraint:
25% nonzeros)
PE utilization 0.719 0.721 0.690 0.697 0.603 0.721 0.625 0.735 0.629 0.563
(25% constraint)
Improvement 1.38X 1.28X 1.55X 1.63X 1.68X 1.29X 1.90X 1.25X 1.72X 1.25X
(25% constraint)

6
107 M Realperformance | .- Threshold _Sparsity
777777 Theoretical performance
A 8E-02 0005
10°
A 4E-02 0.009

A 2602 0019

A 8e03 0044

Sanger GOP/s
=
S
>

/\ 4E-03  0.082

/\ 2603 0.127

i
dense baseline —»!

85 85.5 86 86.5 87 87.5 88 88.5 89
Fl-score

Figure 10: Trade-off between Sanger performance and F1-
score

7.6 Impact of Binary Thresholding

As described in Section 7.5, we obtain the attention mask by apply-
ing a binary threshold T to the predicted attention matrix. Naturally,
the larger T becomes, the more connections are pruned in the atten-
tion mechanism. We empirically choose 4-bit (the MSB of queries
and keys) to predict the sparse attention mask. This is because 4-bit
is the sweet point between accuracy and hardware efficiency.
Figure 10 shows how model accuracy and effective throughput
of Sanger are affected by the choice of the threshold. We collect
data from a BERT-based model fine-tuned on SQuAD v1.1. We
achieve more computation reduction with a higher compression
ratio, which boosts the effective throughput of Sanger. Meanwhile,
the F1 score only drops moderately thanks to our fine-grained

structured pruning scheme. In other words, the speedup compared
to SpAtten [57] and A3 [19] can be further improved with higher
sparsity as shown. The users can use Sanger to explore the trade-
off between speedup, sparsity, and accuracy. Besides, the gap be-
tween actual and theoretical performance grows more significant
as the threshold increases, which echoes with our observation that
a highly sparse attention matrix leads to low hardware efficiency.

8 RELATED WORK

Sparsity in attention mechanism. There are two lines of work
trying to exploit the sparsity in the attention mechanism. The first
line of work [12, 13, 68] aims to improve either accuracy or inter-
pretability by concentrating attention on a few important tokens
rather than assigning non-zero credits to all tokens. More specifi-
cally, these works perform sparsification via explicit top-k selection
[68] or sparse variants of softmax [12, 13] after the full attention
matrix has been computed. In this way, they can learn arbitrary
patterns and fully utilize the intrinsic structure of input data. In
contrast, the second line of work uses sparsity to improve algorith-
mic efficiency [2, 11, 22, 25, 48, 52, 65]. We refer readers to [54] for
a more comprehensive survey on this topic.

Deep learning sparse accelerators. Architecture, modeling,
optimization, and auto-generation techniques for dense DNN ac-
celerators have been widely explored [6-8, 17, 28, 34, 35, 43, 61].



MICRO 21, October 18-22, 2021, Virtual Event, Greece

As sparsification is an effective approach for computation reduc-
tion, a number of studies focus on supporting sparse computa-
tion with efficient architecture designs [9, 14, 15, 18-21, 24, 26, 28,
29, 31-33, 36, 37, 40, 41, 44, 49, 51, 57, 64, 67, 69]. Among them,
[14, 15, 18, 20, 24, 26, 69, 70] apply software-hardware co-design
approaches where a specialized sparsity pattern is designed in syn-
ergy with the accelerator. These sparse accelerators primarily focus
on static sparsity. One of the main contributions of these works is
their novel sparse format designs (e.g. Bitmap in SIGMA[44], CISS
in Tensaurus[51], hierarchical bitmap in SMASH[24]) for storing
the sparse data. However, the sparsity involved in the attention
mechanism is dynamic, which is generated by multiplying queries
and keys. It will incur a very high overhead to conduct such com-
plex format transformation on chip for an end-to-end attention
implementation. Sanger avoids sparsity decoding overhead with
a score-stationary dataflow that unifies SDDMM and SpMM via a
reconfigurable architecture.

In recent years, a few designs have also been proposed to ac-
celerate attention mechanisms [19, 27, 31, 57]. However, these ac-
celerators are limited in either efficiency or generality. A3 [19]
mainly focuses on approximating attention with a reduced amount
of computation. At the architecture level, it only designs several
dot-product modules for acceleration, lacking detailed architecture
optimizations. FTRANS [31] is an FPGA accelerator which applies
Fast Fourier Transformation to the attention mechanism. However,
it restricts the weight matrices to be block-circulant, losing gen-
erality for other applications. SpAtten [57] applies token pruning
technique that removes entire rows and columns of the attention
matrix, but its computation engine is inefficient for accelerating
dynamic sparsity.

9 CONCLUSION

We propose Sanger, a co-design framework for enabling sparse
attention on a reconfigurable systolic array. We first apply quantized
prediction to obtain the sparse attention mask. Then, to ensure a
balanced workload of hardware implementation, we propose an
encoding scheme that transforms the sparse mask into multiple
structured blocks. In hardware aspects, we design a score-stationary
dataflow that unifies the computation of SDDMM and SpMM. We
implement this dataflow on a reconfigurable systolic array, which
supports various sparsity patterns by dynamically configuring the
datapath. Sanger achieves 2.39X and 1.47X speedup over A3 and
SpAtten accelerators.

ACKNOWLEDGMENTS

This work was supported in part by the Beijing Natural Science
Foundation (No. JQ19014) and PCL lab.

A ARTIFACT APPENDIX
A.1 Abstract

In this letter we provide detailed information that will facilitate
the artifact evaluation process. In the artifact checklist section,
we present brief information about this artifact, and outline basic
requirements to reproduce the experiment results. Then we describe
the directory tree of our codebase and go into more detail about

Ligiang Lu, Yicheng Jin, Hangrui Bi, Zizhang Luo, Peng Li, Tao Wang, and Yun Liang

the requirements. Finally, in the experiment workflow section we
explain step by step how to reproduce the experiments.

A.2 Artifact check-list (meta-information)

e Algorithm: Sanger, a framework that harvests sparsity in
the attention mechanism through synergistic hardware and
software co-design. The software part prunes the attention
matrix into a dynamic structured pattern, and the hardware
part features a reconfigurable architecture that exploits such
a pattern.

e Program: Python

e Model: We use BERT-Base-Uncased (420.1MB), GPT2-Small
(522.7MB) and BART-Base (532.1MB). Our scripts download
pre-trained checkpoints from the Hugging Face Model Hub
https://huggingface.co/models automatically.

e Data set: We evaluate models on GLUE (1.2GB), SQuAD v1.1
(120MB) and CLOTH (60MB). Our scripts can automatically
download the GLUE and the SQuAD dataset. As for the
CLOTH dataset, you can download it from this link: https:
/Iwww.cs.cmu.edu/~glail/data/cloth/

¢ Run-time environment: CentOS 7, CUDA SDK 10.1 or
higher.

e Hardware: NVIDIA Tesla V100-PCIE-16GB GPU, AMD
Ryzen Threadripper 3970X CPU

e Execution: Internet connection is required to download
the GLUE and the SQuAD dataset.

e Experiments: We provide shell scripts that can be used to
reproduce the results of the experiments.

e How much disk space are required (approximately)?:
The codebase and downloaded datasets take up about 1.5GB
in total, but note that you need to make sure you have enough
space for the checkpoints. Each checkpoint takes up about
500 MB of space.

e How much time is needed to prepare workflow (ap-
proximately)?: Less than an hour

e How much time is needed to complete experiments
(approximately)?: Training a model could take from 1
minute to 3 hours, depending on the task. Evaluating a model
on any task should finish within 5 minutes. The time required
to conduct other experiments is negligible.

A.3 Description

Below we introduce some important files and directories in the code-
base. For a more detailed description, please refer to the README
in the GitHub repository.

o configs/. This sub-directory contains configuration files for
dense models, sparse models, and static sparsity (BigBird,
Longformer, etc.).

o scripts/. This sub-directory holds the shell scripts for run-
ning experiments.

e bench_cpu_gpu.py. This script benchmarks dense atten-
tion on CPU and GPU.

e modeling_<model>.py. These files contain implementa-
tions of the BERT, GPT2 and BART models, supporting both
dense and sparse attention.


https://huggingface.co/models
https://www.cs.cmu.edu/~glai1/data/cloth/
https://www.cs.cmu.edu/~glai1/data/cloth/

Sanger: A Co-Design Framework for Enabling Sparse Attention using Reconfigurable Architecture

e modeling_sanger_attn.py. This file contains an implemen-
tation of the sparse attention algorithm of Sanger, and some
helper functions for measuring sparsity and load balance.

e modeling_static_spattn.py. This file implements some at-
tention mechanisms with static sparsity, e.g. BigBird and
Longformer.

e run_<task>.py. These files are intended for training or
evaluating models on GLUE, SQuAD or CLOTH.

A.3.1 How to access. You can access our codebase from here:
https://github.com/pku-liang/Sanger The unpacked artifact takes
approximately 10MB of disk space.

A.3.2 Hardware dependencies. Benchmarking experiments on
CPU and GPU require an NVIDIA Tesla V100-PCIE-16GB GPU
and an AMD Ryzen Threadripper 3970X CPU.

A.3.3  Software dependencies. Software experiments require CUDA
SDK 10.1 or higher and Python 3.7 or higher. Other dependent
Python packages are listed in requirements.txt.

A.3.4 Data sets. We evaluate models on three datasets, namely
GLUE, SQuAD, and CLOTH. They correspond to three different
NLP tasks, namely text classification, question answering, and long-
context cloze. Our script automatically downloads the GLUE and
SQuAD datasets before training or evaluation, so you do not need
to download them manually. As for the CLOTH dataset, you need
to download and extract it to the data/cloth sub-directory.

A.3.5 Models. We evaluate the efficiency of Sanger on three mod-
els, namely BERT-Base-Uncased, GPT2-Small, and BART-Base. Our
scripts can automatically download pre-trained models from the
Model Hub, so there is no need to download them manually. Al-
ternatively, you can also download fine-tuned checkpoints and
evaluate them directly.

A.4 Installation

o Install all software dependencies.

e Create a virtual environment with a Python version of at
least 3.7.

e Install all dependent Python packages in requirements.txt

using pip.

A.5 Experiment workflow
Evaluate Sanger performance.

e Train a model with Sanger sparse attention. We provide
scripts for training in the scripts/ sub-directory. For example,
to train a Sanger-pruned BERT-Base model on SQuAD, you
can execute scripts/train_sparse_on_squad.sh. Note that
you have to pass in an appropriate configuration file, which
you can find in configs/. You can skip this step if you choose
to load a fine-tuned checkpoint directly.

e Evaluate the fine-tuned model. We also provide scripts
for evaluation in scripts/. For example, to evaluate the sparse
model from the last step, you can execute
scripts/eval_sparse_on_squad.sh. If you need to load a
checkpoint from a non-standard location, be sure to change
the path in the script. When the evaluation is complete, the
script should print out the accuracy.

MICRO 21, October 18-22, 2021, Virtual Event, Greece

e Measure sparsity and load balance. Each evaluation
script contains a flag that enables measuring the sparsity
level of attention and calculating the load balance of the PE
array. If you set this flag in the previous step, the script will
log the results to a CSV file named load_balance.csv during
evaluation.

Comparison with dense attention and static sparse atten-
tion.

e Train a model with dense or static sparse attention. We
provide dedicated scripts for train models with dense at-
tention (e.g. scripts/train_dense_on_squad.sh). To train
a model with static sparse attention, you can use the same
script as Sanger and pass in an appropriate configuration
file (e.g. bert_base_longformer.json).

¢ Evaluate the fine-tuned model. The process is similar to
evaluating Sanger models. Note that you also need to use
different scripts when evaluating dense models.

Comparison with CPU and GPU. You can measure the
latency of dense attention on CPU and GPU by executing
bench_cpu_gpu.py.

A.6 Evaluation and expected results

On the software side, following the workflow described above, you
should be able to reproduce the results in Figure 8, Figure 10, Table
3, and Table 5 of the paper.

REFERENCES

[1] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew Waterman,
Rimas Avizienis, John Wawrzynek, and Krste Asanovi¢. 2012. Chisel: constructing
hardware in a scala embedded language. In Proceedings of the Design Automation
Conference (DAC).

Iz Beltagy, Matthew E Peters, and Arman Cohan. 2020. Longformer: The long-

document transformer. arXiv preprint arXiv:2004.05150 (2020).

Yoshua Bengio, N. Léonard, and Aaron C. Courville. 2013. Estimating or Prop-

agating Gradients Through Stochastic Neurons for Conditional Computation.

ArXiv abs/1308.3432 (2013).

[4] James Bennett and Stan Lanning. 2007. The netflix prize. In Proceedings of KDD

cup and workshop.

[5] Shijie Cao, Lingxiao Ma, W. Xiao, Chen Zhang, Yunxin Liu, L. Zhang, L. Nie,

and Z. Yang. 2019. SeerNet: Predicting Convolutional Neural Network Feature-

Map Sparsity Through Low-Bit Quantization. In Proceedings of Conference on

Computer Vision and Pattern Recognition (CVPR).

Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu, Yunji Chen,

and Olivier Temam. 2014. Diannao: A small-footprint high-throughput accelera-

tor for ubiquitous machine-learning. Sigplan Notices (2014).

Yunji Chen, Tao Luo, Shaoli Liu, Shijin Zhang, Liqiang He, Jia Wang, Ling Li,

Tianshi Chen, Zhiwei Xu, Ninghui Sun, and Oliver Temam. 2014. Dadiannao: A

machine-learning supercomputer. In Proceedings of the International Symposium

on Microarchitecture (MICRO).

Yu-Hsin Chen, Tushar Krishna, Joel S Emer, and Vivienne Sze. 2016. Eyeriss:

An energy-efficient reconfigurable accelerator for deep convolutional neural

networks. Journal of Solid-State Circuits (2016).

[9] Yu-Hsin Chen, Tien-Ju Yang, Joel Emer, and Vivienne Sze. 2018. Eyeriss v2: A
Flexible Accelerator for Emerging Deep Neural Networks on Mobile Devices.
arXiv preprint arXiv:1807.07928 (2018).

[10] Sharan Chetlur, C. Woolley, Philippe Vandermersch, J. Cohen, John Tran, Bryan
Catanzaro, and Evan Shelhamer. 2014. cuDNN: Efficient Primitives for Deep
Learning. ArXiv abs/1410.0759 (2014).

[11] Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. 2019. Generating
long sequences with sparse transformers. arXiv preprint arXiv:1904.10509 (2019).

[12] Gongalo M. Correia, Vlad Niculae, and André F. T. Martins. 2019. Adaptively

Sparse Transformers. In Proceedings of Conference on Empirical Methods in Nat-

ural Language Processing/International Joint Conference on Natural Language

Processing.

Baiyun Cui, Y. Li, Ming Chen, and Z. Zhang. 2019. Fine-tune BERT with Sparse

Self-Attention Mechanism. In Proceedings of Conference on Empirical Methods in

[2

B3

—_
S

4

8

(13


https://github.com/pku-liang/Sanger

MICRO 21, October 18-22, 2021, Virtual Event, Greece

Natural Language Processing/International Joint Conference on Natural Language
Processing.

[14] Alberto Delmas Lascorz, Patrick Judd, Dylan Malone Stuart, Zissis Poulos,
Mostafa Mahmoud, Sayeh Sharify, Milos Nikolic, Kevin Siu, and Andreas
Moshovos. 2019. Bit-tactical: A software/hardware approach to exploiting value
and bit sparsity in neural networks. In Proceedings of the Twenty-Fourth Inter-
national Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS).

[15] Chunhua Deng, Siyu Liao, Yi Xie, Keshab K Parhi, Xuehai Qian, and Bo Yuan. 2018.
PermDNN: Efficient Compressed DNN Architecture with Permuted Diagonal
Matrices. In Proceedings of the International Symposium on Microarchitecture
(MICRO).

[16] J. Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the Conference of the North American Chapter of the Association for
Computational Linguistics — Human Language Technologies.

[17] Zidong Du, Ro Fasthuber, Tianshi Chen, Paolo Ienne, Ling Li, Tao Luo, Xiaobing
Feng, Yunji Chen, and Olivier Temam. 2015. ShiDianNao: Shifting vision pro-
cessing closer to the sensor. In Proceedings of SIGARCH Computer Architecture
News.

[18] Cong Guo, Bo Yang Hsueh, Jingwen Leng, Yuxian Qiu, Yue Guan, Zehuan Wang,
Xiaoying Jia, Xipeng Li, Minyi Guo, and Yuhao Zhu. 2020. Accelerating sparse
DNN models without hardware-support via tile-wise sparsity. In Proceedings of
the International Conference for High Performance Computing, Networking, Storage
and Analysis (SC).

[19] Tae Jun Ham, Sung Jun Jung, Seonghak Kim, Young H Oh, Yeonhong Park, Yoonho
Song, Jung-Hun Park, Sanghee Lee, Kyoung Park, Jae W Lee, et al. 2020. A 3:
Accelerating Attention Mechanisms in Neural Networks with Approximation.
In Proceedings of the International Symposium on High Performance Computer
Architecture (HPCA).

[20] Song Han, Junlong Kang, Huizi Mao, Yiming Hu, Xin Li, Yubin Li, Dongliang
Xie, Hong Luo, Song Yao, and Yu Wang. 2017. ESE: Efficient Speech Recognition
Engine with Sparse LSTM on FPGA. In Proceedings of the International Symposium
on Field Programmable Gate Arrays (FPGA).

[21] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A Horowitz,
and William J Dally. 2016. EIE: efficient inference engine on compressed deep
neural network. In Proceedings of the International Symposium on Computer
Architecture (ISCA).

[22] Weizhe Hua, Yuan Zhou, Christopher De Sa, Zhiru Zhang, and G Edward Suh.
2019. Boosting the performance of CNN accelerators with dynamic fine-grained
channel gating. In Proceedings of the 52nd International Symposium on Microar-
chitecture (MICRO).

[23] Intel. 2021. Oneapi-Src/oneDNN. https://github.com/oneapi-src/oneDNN.

[24] Konstantinos Kanellopoulos, Nandita Vijaykumar, Christina Giannoula, Roknod-
din Azizi, Skanda Koppula, Nika Mansouri Ghiasi, Taha Shahroodi, Juan Gomez
Luna, and Onur Mutlu. 2019. SMASH: Co-designing Software Compression
and Hardware-Accelerated Indexing for Efficient Sparse Matrix Operations. In
Proceedings of the International Symposium on Microarchitecture (MICRO).

[25] Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. 2020. Reformer: The Efficient
Transformer. ArXiv abs/2001.04451 (2020).

[26] HT Kung, Bradley McDanel, and Sai Qian Zhang. 2019. Packing sparse convo-

lutional neural networks for efficient systolic array implementations: Column

combining under joint optimization. In Proceedings of the International Confer-
ence on Architectural Support for Programming Languages and Operating Systems

(ASPLOS).

HT Kung, Bradley McDanel, Sai Qian Zhang, Xin Dong, and Chih Chiang Chen.

2019. Maestro: A memory-on-logic architecture for coordinated parallel use of

many systolic arrays. In Proceedings of International Conference on Application-

specific Systems, Architectures and Processors (ASAP).

[28] Hyoukjun Kwon, Ananda Samajdar, and Tushar Krishna. 2018. Maeri: Enabling

flexible dataflow mapping over dnn accelerators via reconfigurable interconnects.

In SIGPLAN Notices, Vol. 53. 461-475.

Alberto Delmas Lascorz, Sayeh Sharify, Isak Edo, Dylan Malone Stuart, Omar Mo-

hamed Awad, Patrick Judd, Mostafa Mahmoud, Milos Nikolic, Kevin Siu, Zissis

Poulos, et al. 2019. Shapeshifter: Enabling fine-grain data width adaptation in

deep learning. In Proceedings of the International Symposium on Microarchitecture

(MICRO).

[30] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman
Mohamed, Omer Levy, Ves Stoyanov, and Luke Zettlemoyer. 2020. Bart: Denoising
sequence-to-sequence pre-training for natural language generation, translation,
and comprehension. Proceedings of Annual Conference of the Association for
Computational Linguistics (2020).

[31] Bingbing Li, Santosh Pandey, Haowen Fang, Yanjun Lyv, Ji Li, Jieyang Chen, Mimi

Xie, Lipeng Wan, Hang Liu, and Caiwen Ding. 2020. FTRANS: energy-efficient

acceleration of transformers using FPGA. In Proceedings of the International

Symposium on Low Power Electronics and Design (ISLPED).

Yun Liang, Ligiang Lu, Yicheng Jin, Jiaming Xie, Ruirui Huang, Jiansong Zhang,

and Wei Lin. 2021. An Efficient Hardware Design for Accelerating Sparse CNNs

[27

[29

[32

Ligiang Lu, Yicheng Jin, Hangrui Bi, Zizhang Luo, Peng Li, Tao Wang, and Yun Liang

with NAS-based Models. Transactions on Computer-Aided Design of Integrated

Circuits and Systems (TCAD) (2021).

Yun Liang, Ligiang Lu, and Jiaming Xie. 2020. OMNI: A framework for integrating

hardware and software optimizations for sparse CNNs. Transactions on Computer-

Aided Design of Integrated Circuits and Systems (TCAD) (2020).

Daofu Liu, Tianshi Chen, Shaoli Liu, Jinhong Zhou, Shengyuan Zhou, Olivier

Teman, Xiaobing Feng, Xuehai Zhou, and Yunji Chen. 2015. Pudiannao: A

polyvalent machine learning accelerator. In Proceedings of SSGARCH Computer

Architecture News.

Ligiang Lu, Naiging Guan, Yuyue Wang, Liancheng Jia, Zizhang Luo, Jieming Yin,

Jason Cong, and Yun Liang. 2021. TENET: A Framework for Modeling Tensor

Dataflow Based on Relation-centric Notation. In Proceedings of the International

Symposium on Computer Architecture (ISCA).

Ligiang Lu and Yun Liang. 2018. SpWA: an efficient sparse winograd convolutional

neural networks accelerator on FPGAs. In Proceedings of the Design Automation

Conference (DAC).

Liqiang Lu, Jiaming Xie, Ruirui Huang, Jiansong Zhang, Wei Lin, and Yun Liang.

2019. An efficient hardware accelerator for sparse convolutional neural networks

on FPGAs. In Proceedings of International Symposium on Field-Programmable

Custom Computing Machines (FCCM).

Julian McAuley and Jure Leskovec. 2013. Hidden factors and hidden topics: un-

derstanding rating dimensions with review text. In Proceedings of The conference

on Recommender systems (RecSys).

[39] NVIDIA. 2021. NVIDIA/DeepLearningExamples.

https://github.com/NVIDIA/DeepLearningExamples.

Subhankar Pal, Jonathan Beaumont, Dong-Hyeon Park, Aporva Amarnath, Siying

Feng, Chaitali Chakrabarti, Hun-Seok Kim, David Blaauw, Trevor Mudge, and

Ronald Dreslinski. 2018. Outerspace: An outer product based sparse matrix

multiplication accelerator. In Proceedings of the International Symposium on High

Performance Computer Architecture (HPCA).

[41] Angshuman Parashar, Minsoo Rhu, Anurag Mukkara, Antonio Puglielli, Rang-
harajan Venkatesan, Brucek Khailany, Joel Emer, Stephen W Keckler, and
William ] Dally. 2017. Scnn: An accelerator for compressed-sparse convolu-
tional neural networks. In Proceedings of SSIGARCH Computer Architecture News.

[42] Adam Paszke, S. Gross, Francisco Massa, A. Lerer, J. Bradbury, G. Chanan, Trevor

Killeen, Z. Lin, N. Gimelshein, L. Antiga, Alban Desmaison, Andreas Kopf, Edward

Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, B.

Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. 2019. PyTorch: An Imperative

Style, High-Performance Deep Learning Library. In NeurIPS.

Wajahat Qadeer, Rehan Hameed, Ofer Shacham, Preethi Venkatesan, Christos

Kozyrakis, and Mark A Horowitz. 2013. Convolution engine: balancing effi-

ciency & flexibility in specialized computing. In Proceedings of the 40th Annual

International Symposium on Computer Architecture (ISCA).

Eric Qin, Ananda Samajdar, Hyoukjun Kwon, Vineet Nadella, Sudarshan Srini-

vasan, Dipankar Das, Bharat Kaul, and Tushar Krishna. 2020. SIGMA: A Sparse

and Irregular GEMM Accelerator with Flexible Interconnects for DNN Training.

In Proceedings of the International Symposium on High Performance Computer

Architecture (HPCA).

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya

Sutskever. 2019. Language models are unsupervised multitask learners. OpenAIl

blog (2019).

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever,

et al. 2019. Language models are unsupervised multitask learners. OpenAlI blog

(2019).

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. 2016.

SQuAD: 100, 000+ Questions for Machine Comprehension of Text. In Proceedings

of Conference on Empirical Methods in Natural Language Processing.

Aurko Roy, M. Saffar, Ashish Vaswani, and David Grangier. 2020. Efficient

Content-Based Sparse Attention with Routing Transformers. In Proceedings of

Transactions of the Association for Computational Linguistics (TACL).

Shaden Smith and George Karypis. 2015. Tensor-matrix products with a com-

pressed sparse tensor. In Proceedings of the Workshop on Irregular Applications:

Architectures and Algorithms.

Mingcong Song, J. Zhao, Y. Hu, Jiaqi Zhang, and Tao Li. 2018. Prediction Based Ex-

ecution on Deep Neural Networks. In Proceedings of the International Symposium

on Computer Architecture (ISCA).

Nitish Srivastava, Hanchen Jin, Shaden Smith, Hongbo Rong, David Albonesi,

and Zhiru Zhang. 2020. Tensaurus: A versatile accelerator for mixed sparse-

dense tensor computations. In Proceedings of the International Symposium on

High Performance Computer Architecture (HPCA).

[52] Yi Tay, Dara Bahri, L. Yang, Donald Metzler, and D. Juan. 2020. Sparse Sinkhorn

Attention. In Proceedings of International Conference on Machine Learning (ICML).

Yi Tay, M. Dehghani, Samira Abnar, Y. Shen, Dara Bahri, Philip Pham, J. Rao,

Liu Yang, Sebastian Ruder, and Donald Metzler. 2020. Long Range Arena: A

Benchmark for Efficient Transformers. ArXiv abs/2011.04006 (2020).

[54] Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Metzler. 2020. Efficient
transformers: A survey. arXiv preprint arXiv:2009.06732 (2020).

[33

(34

[35

[36

[37

[38

=
=

S
&

[44

[45

[46

N
=

(48

[49

[50

[51

[53



Sanger: A Co-Design Framework for Enabling Sparse Attention using Reconfigurable Architecture

[55] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you
need. In Proceedings of the 31st International Conference on Neural Information
Processing Systems (NeurIPS).

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R.
Bowman. 2018. GLUE: A Multi-Task Benchmark and Analysis Platform for
Natural Language Understanding. In Proceedings of the Workshop: Analyzing and
Interpreting Neural Networks for NLP.

Hanrui Wang, Zhekai Zhang, and Song Han. 2021. SpAtten: Efficient Sparse
Attention Architecture with Cascade Token and Head Pruning. In Proceedings of
the International Symposium on High Performance Computer Architecture (HPCA).
Meiqi Wang, Siyuan Lu, Danyang Zhu, Jun Lin, and Zhongfeng Wang. 2018.
A high-speed and low-complexity architecture for softmax function in deep
learning. In Proceedings of 2018 Asia Pacific Conference on Circuits and Systems.
X. Wang, Ross B. Girshick, A. Gupta, and Kaiming He. 2018. Non-local Neural
Networks. In Proceedings of Conference on Computer Vision and Pattern Recognition
(CVPR).

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue,
Anthony Moi, Pierric Cistac, Tim Rault, R’emi Louf, Morgan Funtowicz, and
Jamie Brew. 2020. Transformers: State-of-the-Art Natural Language Processing.
In Proceedings of Conference on Empirical Methods in Natural Language Processing.
Qingcheng Xiao, Size Zheng, Bingzhe Wu, Xu Pengcheng, Xuehai Qian, and Yun
Liang. 2021. HASCO: Towards Agile HArdware and Software CO-design for
Tensor Computation. In Proceedings of the International Symposium on Computer
Architecture (ISCA).

Qizhe Xie, Guokun Lai, Zihang Dai, and E. Hovy. 2018. Large-scale Cloze Test
Dataset Created by Teachers. In Proceedings of Conference on Empirical Methods
in Natural Language Processing.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron C. Courville, R.
Salakhutdinov, R. Zemel, and Yoshua Bengio. 2015. Show, Attend and Tell: Neural

MICRO 21, October 18-22, 2021, Virtual Event, Greece

Image Caption Generation with Visual Attention. In Proceedings of International
Conference on Machine Learning (ICML).

Tzu-Hsien Yang, Hsiang-Yun Cheng, Chia-Lin Yang, I-Ching Tseng, Han-Wen
Hu, Hung-Sheng Chang, and Hsiang-Pang Li. 2019. Sparse reram engine: Joint
exploration of activation and weight sparsity in compressed neural networks. In
Proceedings of the 46th International Symposium on Computer Architecture (ISCA).
Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti,
Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, et al. 2020.
Big bird: Transformers for longer sequences. arXiv preprint arXiv:2007.14062
(2020).

Han Zhang, 1. Goodfellow, Dimitris N. Metaxas, and Augustus Odena. 2019.
Self-Attention Generative Adversarial Networks. In Proceedings of International
Conference on Machine Learning (ICML).

Shijin Zhang, Zidong Du, Lei Zhang, Huiying Lan, Shaoli Liu, Ling Li, Qi Guo,
Tianshi Chen, and Yunji Chen. 2016. Cambricon-X: An accelerator for sparse neu-
ral networks. In Proceedings of the International Symposium on Microarchitecture
(MICRO).

Guangxiang Zhao, Junyang Lin, Zhiyuan Zhang, Xuancheng Ren, Qi Su, and
X. Sun. 2019. Explicit Sparse Transformer: Concentrated Attention Through
Explicit Selection. ArXiv abs/1912.11637 (2019).

Xuda Zhou, Zidong Du, Qi Guo, Shaoli Liu, Chengsi Liu, Chao Wang, Xuehai
Zhou, Ling Li, Tianshi Chen, and Yunji Chen. 2018. Cambricon-S: Addressing Ir-
regularity in Sparse Neural Networks through A Cooperative Software/Hardware
Approach. In Proceedings of the International Symposium on Microarchitecture
(MICRO).

Maohua Zhu, Tao Zhang, Zhenyu Gu, and Yuan Xie. 2019. Sparse Tensor Core:
Algorithm and Hardware Co-Design for Vector-wise Sparse Neural Networks on
Modern GPUs. In Proceedings of the 52nd International Symposium on Microarchi-
tecture (MICRO).



	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Primer on Attention
	2.2 Existing Sparse Attention Designs

	3 Sanger Overview
	4 Software Pruning for Sparse Attention
	4.1 Predicting Attention Matrix
	4.2 Generating Attention Mask
	4.3 Packing and Splitting Attention Mask

	5 Hardware Dataflow
	5.1 Dense Score Stationary Dataflow
	5.2 Sparse Score Stationary Dataflow

	6 Architecture Optimization
	6.1 Reconfigurable Systolic Array Design
	6.2 Implementation Details

	7 Experiments
	7.1 Experimental Settings
	7.2 Pruning Results
	7.3 Comparison with CPUs and GPUs
	7.4 Comparison with Other Accelerators
	7.5 Pattern Visualization and Impact of Packing
	7.6 Impact of Binary Thresholding

	8 Related Work
	9 Conclusion
	Acknowledgments
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment workflow
	A.6 Evaluation and expected results

	References

