
TensorLib: A Spatial Accelerator Generation
Framework for Tensor Algebra

Liancheng Jia1, Zizhang Luo1, Liqiang Lu1, and Yun Liang1,2

1Center for Energy-Efficient Computing and Applications, School of EECS, Peking University
2Pengcheng laboratory, China

{jlc, semiwaker, liqianglu, ericlyun}@pku.edu.cn

Abstract—Tensor algebra finds applications in various do-
mains, and these applications, especially when accelerated on
spatial hardware accelerators, can deliver high performance and
low power. Spatial hardware accelerator exhibits complex design
space. Prior approaches based on manual implementation lead to
low programming productivity, rendering thorough design space
exploration impossible. In this paper, we propose TensorLib, a
framework for generating spatial hardware accelerator for tensor
algebra applications. TensorLib is motivated by the observa-
tion that, different dataflows share common hardware modules,
which can be reused across different designs. To build such a
framework, TensorLib first uses Space-Time Transformation to
explore different dataflows, which can compactly represent the
hardware dataflow using a simple transformation matrix. Next,
we identify the common structures of different dataflows and
build parameterized hardware module templates with Chisel.
Our generation framework can select the needed hardware
modules for each dataflow, connect the modules using a specified
interconnection pattern, and automatically generate the complete
hardware accelerator design. TensorLib remarkably improves
the productivity for the development and optimization of spatial
hardware architecture, providing a rich design space with trade-
offs in performance, area, and power. Experiments show that
TensorLib can automatically generate hardware designs with
different dataflows and achieve 21% performance improvement
on FPGA compared to the state-of-the-arts.

I. INTRODUCTION

Tensor algebra is a prevalent tool and has been successfully
applied to a broad range of applications such as machine learn-
ing, data analytics. Tensor algebra features different dimen-
sions, sizes and computation patterns, which require special
hardware acceleration. For example, the 2-D convolution is
one of the most popular tensor operations in deep learning
applications [10]. It involves a 4-D weight and 3-D input and
requires to accumulate the partial sums in four dimensions
[10]. MTTKRP is a widely used tensor operation for tensor
factorization in recommendation systems, which takes one 3-
D tensor and two matrices as inputs and generates a matrix.
Due to the regular computation patterns, spatial hardware
accelerators are commonly used for the acceleration of tensor
algebra [3], [9], [16]–[18].

The majority of the spatial accelerator designs follow a
hierarchical architecture [13]. As shown in Figure 1, spatial

Yun Liang is the corresponding author.

accelerators usually consist of an array of homogeneous pro-
cessing elements (PEs), an on-chip network that connects PEs
together, a shared scratchpad buffer, and a system controller.
The array of PEs can provide huge parallelism, and the con-
nection between PEs can exploit different types of data reuse.
While most spatial accelerators adopt the same hierarchical
architecture, the actual implementation of each design can
vary a lot. Among the various design parameters, hardware
dataflow plays the most important role as it determines how
the tensor is computed and communicated between PEs. There
exists a sufficient large design space of dataflows for the spatial
hardware accelerator design. Initially, dataflow is categorized
by specifying the tensors that are reused temporarily inside
each PE. For example, [16] uses output stationary systolic
array dataflow because the output tensor elements stay inside
PE during execution. Similarly, [9] uses weight stationary
dataflow and [3] uses row stationary dataflow.

The complex structure of spatial accelerator and its large
design space leads to low productivity, rendering thorough
design space exploration impossible. To improve the program-
ming productivity, HLS tools have been used for accelerator
designs, which supports hardware generation with software-
style programming [4], [16]. Some recent works also design
DSLs or other notations to represent the dataflow and hardware
architecture of spatial accelerators [11]–[14]. The user can use
DSL to express the architecture and the compiler generates
hardware code in HLS. However, the auto-generated HLS
code is hard to optimize, resulting in low performance. Recent
advances in hardware programming introduce highly param-
eterized and modular design principles based on Scala and
Python [1]. The high-level language can be equally expressive
as Verilog which supports cycle-level RTL description, but
they also support functional and object-oriented programming.
The high-level programming features enable a large variety of
hardware instances to be generated with the same hardware
template, which is extremely useful for spatial accelerators
with a variety of dataflows.

In this paper, we propose TensorLib, a framework for gen-
erating spatial accelerator for tensor algebra. We use Space-
Time Transformation (STT) [2] as a means of expression to
represent the hardware dataflow. STT maps loop instances to
hardware spatially (coordinates in the PE array) and tempo-
rally (timestamp of execution) and it can cover the complete

978-1-6654-3274-0/21/$31.00 ©2021 IEEE 865

20
21

 5
8t

h
A

C
M

/IE
EE

 D
es

ig
n

A
ut

om
at

io
n

C
on

fe
re

nc
e

(D
A

C
) |

 9
78

-1
-6

65
4-

32
74

-0
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
D

A
C

18
07

4.
20

21
.9

58
63

29

Authorized licensed use limited to: Zhejiang University. Downloaded on June 13,2024 at 05:37:24 UTC from IEEE Xplore. Restrictions apply.

PE Array

On-chip Buffer

…

…
… … …

Main Memory Host CPU

ControllerBank 1 Bank 2 …

PE0,0 PE0,1

PEM,0 PEM,1 PEM,N

PE0,N

STT: T =
1 0 0
0 1 0
1 1 1

x. =
1
2
3

T ⋅ x. =

1

2

6

PE0,0 PE0,1 PE0,2

PE1,0 PE1,1 PE1,2

PE2,0 PE2,1 PE2.2

cycle

0 1 2 3 4 5 6
(b) STT Transformation(a) Spatial Accelerator Hierarchy

Fig. 1: Spatial accelerator and Space-Time Transformation

design space of spatial dataflows with a linear transformation.
By inferring the pattern of data reuse using STT, we can
directly represent various dataflows used in spatial accelerators
including unicast, systolic, multicast, stationary, etc.

We observe that different hardware dataflows can share
common hardware modules at each level of the hierarchical
structure. In other words, a new dataflow can be derived from
an existing dataflow by only modifying certain parts. Based
on these findings, we develop a few basic hardware compo-
nent templates for each level of hierarchy using Chisel [1],
facilitating hardware reuse of different dataflows. When a
dataflow is specified by STT, TensorLib can automatically
select the templates and connect them together to build the
hardware architecture. Some recent HLS frameworks also
apply STT [4], [8], [11], but they are limited in both gen-
erability and performance. First, their proposals mainly target
systolic architectures which do not cover the complete space
of dataflows, and only support limited applications. Second,
the tensor algorithm is tightly coupled with architecture in
their frameworks, making it hard to optimize. We overcome
these challenges by providing a thorough dataflow analysis
based on STT and building highly parameterized hardware
module templates. Overall, TensorLib makes the following
contributions,

• We propose TensorLib, a framework to automatically
generate various hardware dataflow implementation of
spatial accelerators for tensor algebra applications.

• We develop a formal representation of spatial hardware
dataflows using space-time transformation which can
cover a comprehensive design space of dataflows.

• We integrate the STT-based dataflow analysis with
Chisel-based hardware template to build a accelerator
generator with rich design space, high productivity and
good performance.

Experiment shows that TensorLib is able to generate a large
number of dataflow architectures for various tensor applica-
tions. Compared to the state-of-the-art, Tensorlib achieves 21%
throughput improvement on FPGA for matrix multiplication
benchmark, and supports more dataflows and applications,
which remarkably improves both performance and generality.
The source code of Tensorlib is available at https://www.
github.com/kirliavc/tensorlib.

II. SPACE-TIME TRANSFORMATION BACKGROUND

Space-time transformation (STT) is a linear transformation
that maps the tensor algebra to hardware from a spatial and
temporal perspective [2]. STT can be used for tensor algebra
whose computation can be described in perfect nested loops.
The PE array can be viewed as a hypercube, and the execution
of hardware can be identified as a space vector and a time
scalar indicating where and when the computation takes place.
STT transforms a point in the loop nest to the space-time
vector in hardware execution using a matrix multiplication
operation. For example, given a loop iteration in the loop nest
~x = [i, j, ...]T and a transformation matrix T , the execution
space and time can be calculated as follows,[

~p
t

]
= Tx (1)

where space vector ~p means the PE coordinates inside the
PE array and time scalar t means the time step of execution.
Figure 1 (b) shows an example using matrix multiplication
C[i, j]+ = A[i, k]×B[k, j] as the target tensor algebra. There
are three iterator variables i, j and k. When i = 1, j = 2, k =

3, using equation 1 we can get
[
~p
t

]
= (1, 2, 6)T , which means

A[1, 3] × B[3, 2] takes place at PE (1, 2) at the sixth cycle.
Since a PE can only perform one operation per cycle, matrix
T must be a full-ranked matrix so that there is an one-to-one
mapping between iterator space and space-time space.

III. FRAMEWORK

Figure 2 presents the overview of TensorLib framework.
The workflow can be divided into two steps: dataflow genera-
tion and hardware implementation generation. For the dataflow
generation, TensorLib uses the tensor algebra described by a
nested loop and an STT matrix (T in Equation (1)) as input.
The framework first maps the nested loop into the spatial
hardware PE array using STT. After that, by analyzing the
recurrence of the same tensor element in different space-time
vectors, TensorLib determines the reuse pattern and dataflow
type of each tensor. The computation involves multiple tensors
and STT generates different dataflows for each tensor. We
categorize the dataflow for each tensor into five types: Unicast,
Stationary, Systolic, Multicast (Reduction Tree for output) and
2D-reuse. Details are discussed in Section IV.

The second step is hardware generation. The framework
generates the 3-level hierarchy of spatial accelerators in a
bottom-up manner. It first uses the dataflow type of each tensor
to select the internal modules of PE and connect them with the
computation IP to form the PE structure. Next, it connects the
PEs together with the generated patterns to form the PE array.
Finally, it generates the memory modules with access pattern
and external memory IPs, and the controller which provides
control signals for both PE and memory ports. Details are
discussed in section V.

IV. DATAFLOW GENERATION

To represent a dataflow, it is critical to capture the movement
of each tensor. Given a loop iteration ~x, the tensor index

866

Authorized licensed use limited to: Zhejiang University. Downloaded on June 13,2024 at 05:37:24 UTC from IEEE Xplore. Restrictions apply.

Tensor Algorithm
Definition

Space-Time
Transformation

Reuse
Analysis

PE Structure &
Connection Topology

Compute IP

PE Structure

PE Modules

PE Array
Structure

PE Interconnection

Mem &
Controller

Mem Config

Memory IP

Complete
Hardware

Generate RTL
Implementation

Fig. 2: The overview of TensorLib

accessed by ~x can be expressed as ~I = A~x, where A is
the corresponding access matrix. The mapping between tensor
index and loop iteration index can be 1-to-N so that the same
tensor element is accessed by multiple loop iterations. By
transforming the loop iterations to the space-time domain, the
reuse of the same tensor element forms the reuse hyperplane in
space-time space, which determines how the tensor moves (e.g.
dataflow). By replacing the ~x in Equation 1 with accessing
matrix, we have,

AT−1

[
~p
t

]
= ~I (2)

Based on this, we can build a reuse subspace composed
of all the space-time points that reuse the same tensor index.
Next, based on the rank of the reuse subspace, we divide the
reuse shape into three cases as shown in Table I. Firstly, if the
rank is 0, the hyperplane is actually a single point, which
means the tensor element only appears once in the whole
computation without any reuse. The unicast dataflow requires
large on-chip bandwidth since every PE reads data from the
on-chip memory independently.

If the rank equals to 1, the hyperplane is a straight line,
and the dataflow is determined by the direction of the line.
We can calculate d~p and dt easily using the base vector of
the hyperplane, as showed by Equation 3, where Eig is the
first eigenvector, E is the identity matrix, (AT−1)− is the
pseudoinverse of AT−1.[

d~p
dt

]
= Eig

(
E − (AT−1)−(AT−1)

)
(3)

There are totally three sub-cases:
• d~p = ~0, dt 6= 0. The same tensor element appears in the

same PE, but at different time steps, which means that
the tensor is stationary and stays inside one PE.

• d~p 6= ~0, dt 6= 0. The tensor element appears in different
PEs and at different time steps. This corresponds to
systolic dataflow where data are delayed for one cycle
before being sent out to other PE.

• d~p 6= ~0, dt = 0. The tensor element appears in different
PEs but at same time step. The same data must be
transformed to different PEs at the same time, which

TABLE I: Dataflow analysis with STT

Subspace
Dimension Shape Space-Time

Reuse Space
Tensor

Dataflow

0 - Unicast

1
d~p = 0, dt 6= 0 Stationary

d~p 6= 0, dt 6= 0 Systolic

d~p 6= 0, dt = 0 Multicast

2

t-axis
Vertical Broadcast

t-axis
Parallel

Multicast
& Stationary

t-axis
Intersect

Systolic
& Multicast

corresponds to a multicast dataflow. If it is a output tensor,
the dataflow indicates that different partial results is gen-
erated simultaneously by different PEs, which requires a
reduction tree to generate final results.

Finally, if the rank is 2, the reuse subspace is a 2D plane. In
this case, the shape of reuse space is categorized based on the
relationship with time axis. There are totally three sub-cases:

• Vertical to t-axis. The same tensor element is broadcasted
to all the PEs in the array at the same cycle.

• Parallel to t-axis. The tensor element is firstly broadcasted
to a group of PEs, and the element keeps stationary in
the PE during the execution stage.

• Intersect with t-axis. The tensor element is firstly broad-
casted to a group of registers, and then traverses between
PE in a systolic style.

The PE array dataflow and interconnection pattern of 2D
reuse subspace is similar to the 1D case because both of
them are formed with 1D reuse patterns (systolic, multicast
and stationary). Finally, typical tensor algebras such as 2D
Convolution contain more than three loop nests. For a 2D PE
array, we need to select three loops (2D space + 1 time) from
the loop nest to map to space-time space. The remaining loops
are executed sequentially which doesn’t influence PE dataflow.
When PE and memory sizes are determined, the loops are
performed tiling to fit the hardware resources.

Using the example in Figure 1 (b), the accessing matrix

for A[i, k] is
[
1 0 0
0 0 1

]
. With Equation (3), we can find that

the dimension of reuse subspace is 1 and
[
d~p
dt

]
= (0, 1, 1)T ,

which means tensor A uses the systolic dataflow with vertical
direction.

867

Authorized licensed use limited to: Zhejiang University. Downloaded on June 13,2024 at 05:37:24 UTC from IEEE Xplore. Restrictions apply.

(1) PE Internal Modules (2) PE Interconnection

Systolic Stationary Multicast/Unicast Systolic/Stationary Multicast/Reduction Tree Unicast

Input
Tensor

(a) (c) (e)

Output
Tensor

(b) (d) (f)

comp. cell

reg

comp. cell

reg

regreg

comp. cell

reg reg

comp. cell

comp. cell

reg

comp. cell

: input tensor : output tensor
comp.

cell : computation cell

PEmem PE PE

PE memPE PE

PEmem PE PE

x x x x
+ +

+
mem

mem : on-chip memory bank

PEmem

memPE

Fig. 3: The PE internal modules and interconnection modules for different dataflows

+ +
+

+ +
+

(a) Systolic

(c) Eyeriss
“Row-Stationary”

(d) Multicast &
Reduction Tree

(b) Systolic & Multicast

output

input

weight

Fig. 4: Examples of PE interconnection for different dataflows

V. HARDWARE GENERATION

After dataflow generation, the next step is to implement
the architecture with the specific dataflow. The architecture
of spatial accelerators can be separated into three levels: PE
structure, PE-Array interconnection, on-chip shared buffer and
controller. In this section, we discuss how to generate each
level of hardware architecture for different dataflows.

A. PE Generation

The PE structure consists of the computation cell and
the internal modules that connect the cell with I/O ports.
The computation cells are manually implemented IPs. The
difference in dataflows mainly lies in the internal modules
that connect the I/O ports and the computation cells. Since
each tensor can use different dataflow and the internal modules
for each tensor do not connect to each other, they can be
implemented independently. As shown in Table 1, the dataflow
of each tensor inside PE has three types: (a) systolic, (b)
stationary and (c) multicast or reduction tree. Each tensor can
be either input or output of the algorithm. The implementation
is different for input and output tensor because the output
tensor needs to read results from the computation cell, so there
are 6 conditions in total. In TensorLib framework, we build
the implementation of PE internal modules for each condition,
and the circuit diagram is presented in Figure 3.

• Modules (a) and (b) are designed for systolic dataflows.
Tensor elements always transfer to their neighboring PEs
every cycle. The difference is that the output data is
generated from the computation cell and the input data
is transferred to the next PE directly.

• Modules (c) and (d) are designed for stationary tensors.
Tensor elements stay inside PE during execution, but the
data needs to be updated when the execution stage ends. It
uses a double-buffer structure to enable the parallelism of
computation and data communication. In (d), one register
is used to update the result of the current stage, and the
other is used to transfer the results of the last stage.

• Modules (e) and (f) are designed for multicast and unicast
dataflows, where data are received and passed directly.

Different PE dataflow can be constructed by selecting the
corresponding modules. For example, output stationary [16]
dataflow contains two modules (a) (systolic, input) and one
module (d) (stationary, output). Weight stationary [9] dataflow
contains one (a), one (b) (systolic, output) and one (c) (sta-
tionary, input). Eyeriss [3] dataflow uses one multicast and one
stationary module for input, and systolic module for output.
The selected components are connected with the PE body
and computation cell components to generate the complete
PE structure.

B. Interconnection and Memory Generation

Different dataflows also require different connection topolo-
gies between PEs. Figure 3 (2) shows the PE interconnection
patterns for different dataflows. The systolic and station-
ary dataflows connect adjacent PEs together. The direction
of systolic dataflow interconnection is determined by the
reuse vector (d~p, dt). The output of PE(x, y) connects to
PE(x + dx, y + dy) after delaying dt cycle. For multicast
input dataflow, the same input data is transferred from the
on-chip buffer to PEs in a row directly at the same cycle.
The output multicast dataflow is implemented with a reduction
tree to perform a reduction on the output of PEs. For unicast
dataflow, different PEs are totally independent and connect to
the on-chip memory bank directly. The next step is on-chip
memory generation. Each group of PEs that reuse the same
tensor indexes is assigned with a particular memory bank.
TensorLib automatically generates the memory module and
connects to the PE array with the pattern shown in Figure

868

Authorized licensed use limited to: Zhejiang University. Downloaded on June 13,2024 at 05:37:24 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Evaluated Tensor Algebras

Name Formula
GEMM C[m,n]+ = A[m, k]×B[n, k]

Batched-GEMV C[m,n]+ = A[m, k, n]×B[m, k]
Conv2D C[k, y, x]+ = A[c, y + p, x+ q]×B[k, c, p, q]

Depthwise-Conv C[k, y, x]+ = A[k, y + p, x+ q]×B[k, p, q]
MTTKRP D[i, j]+ = A[i, k, l]×B[k, j]× C[l, j]

TTMc D[i, j, k]+ = A[i, l,m]×B[l, j]× C[m, k]

3 (2). We design a flexible template for the memory module
which supports different load/store patterns.

Figure 4 shows four examples of PE interconnection pat-
terns based on different types of dataflow for GEMM (the
connection of stationary dataflow isn’t shown). In systolic
dataflow (a), PEs are connected one by one, and data is
transferred to the adjacent PE every cycle in a fixed direction.
For multicast input dataflow (b), tensor elements are read
from shared on-chip bank and broadcasted to every PEs
simultaneously. Eyeriss [3] dataflow uses diagonal connection
for input multicast dataflow as shown in (c). Finally, for
multicast output dataflow, different PEs generate their partial
sums at the same cycle, and they are connected with reduction
trees to generate the final results as shown in (d).

VI. EXPERIMENTAL EVALUATION

Given the dataflow specified by STT, TensorLib generates
the hardware implemented in Chisel [1]. The generated Chisel
code is compiled to Verilog and then is synthesized on both
ASIC and FPGA platforms. For ASIC evaluation, we use
Synopsys DC compiler with 55nm UMC 1P8F technology
for synthesis, and Synopsys VCS for simulation. For FPGA
evaluation, we use Xilinx VU9P with 6840 DSPs and 2160
BRAMs. We use Xilinx Vivado 2019.1 software for FPGA
synthesis. For FPGA floating-point multiplication, we use
Xilinx’s Floating-Point IP and integrate it into Chisel imple-
mentation as a BlackBox module.

We evaluate six tensor applications: GEMM, Batched-
GEMV, Conv2D (2 layers from ResNet), Depthwise-Conv2D,
MTTKRP and TTMc. The formula of each tensor algebra is
shown in Table 1. For each tensor, we use S, T, M, U, B to refer
to systolic, stationary, multicast (reduction tree), unicast, 2-D
reuse space (implemented with multicast & systolic) dataflow,
respectively. To represent a dataflow using STT, we first need
to select three loop iterators from the loop nest. Therefore, in
the following, we name the dataflow of the hardware using
the selected loop iterators and the dataflow of each tensor.
For example, XPQ-MMT refers to selecting X, P, Q loops to
perform STT transformation, and use multicast dataflow for A
and B, and Stationary for C, respectively. For Conv2D, XYP-
MMT is the dataflow with multicast connection, KCX-SST
and KCX-STS are well-known output-stationary and weight-
stationary systolic array dataflows [6], [9], [16], and XYP-
MST is similar as ShiDiannao’s dataflow [5].

A. Performance Results

We evaluate the execution cycles of different dataflows
with simulation. We set the size of PE array to 16 × 16, it

KXY-SBU
KCX-SST
KCX-STM
KCP-BUS
CPQ-UUB
XPQ-MMT
XPQ-SSM
XYP-MMM
XYP-STM
KPX-MMM
KPX-MST

KXY-SBU
KCX-SST
KCX-STM
KCP-BUS
CPQ-UUB
XPQ-MMT
XPQ-SSM
XYP-MMM
XYP-STM
KPX-MMM
KPX-MST

(f) Conv2D-ResNet-Layer2 (g) Conv2D-ResNet-Layer5

(d) MTTKRP

0%
20%
40%
60%
80%

100%

IJK-BBBU
IJL-SSBB
IKL-SBBS
JKL-BSBS
ILM-UBBB

(e) TTMc

(c) Conv2D-Depthwise

KXY-SSU
KPQ-MUU
XPQ-MMT
XYP-STM
XYP-MMM
KPX-MMM
KPX-MST

IJK-SSBT

IJL-SSBT

IKL-UBBB

JKL-SSTB

0%
20%
40%
60%
80%

100%

MNK-MTM
MNK-MSM
MNK-STM
MNK-MMT
MNK-MST
MNK-SST
MNK-TSS

MNK-USS
MNK-UST
MNK-UTS
MNK-UMM
MNK-UMT
MNK-UMS

(a) GEMM (b) Batched-GEMV

Fig. 5: Normalized performance of different dataflows for each
tensor algebra

runs under 320MHz frequency with 32GB/s on-chip band-
width between PE array and scratchpad memory. Figure 5
presents the normalized performance of a few representative
dataflows measured by execution cycles compared with peak
performance (full PE array utilization). As shown, different
dataflows vary greatly in performance.

For GEMM benchmark, the performance of multicast
dataflows (MTM) is better than systolic dataflow (STS) be-
cause multicast dataflows have a smaller pipeline overhead
than systolic array. But systolic array is preferred in hardware
because of the lower interconnection cost and better frequency.
For MTTKRP and TTMc, the unicast dataflows (e.g. IKL-
UBBB and IJK-BBBU) perform worse than others because
unicast dataflows require all PEs to transfer data with on-chip
memory simultaneously and bandwidth becomes insufficient.
Batched-GEMV can only use unicast dataflow because the
tensor A is only accessed once and cannot be reused during
computation. For Conv2D, some selected loops contain a small
iteration range (e.g. Conv2D kernel size P and Q can be 3),
leading to low utilization of PEs. For example, XYP-SMM and
KPX-TMM have 1/16 idle PEs since the range of p is 3 and
only 15 out of 16 rows of PE are used. The performance of
ResNet-Layer5 is even lower because X and Y loops are also
small (x=y=7). For the KPX-MST dataflows used in Conv2D,
although a PE is assigned with workloads, it becomes idle
in some cycles because of communication delay. When the
execution cycle is small, the communication delay can be
larger than computation, which greatly hurts performance. For
Conv2D workloads, selecting KCX iterations can deliver better
performance because it becomes standard GEMM operation
with large loop bounds. However, for Depthwise-Conv, a
large reduction dimension doesn’t exist, so regular Conv2D
dataflows cannot be applied to Depthwise-Conv. The KPX-
MMM and XYP-MMM dataflow perform better than other
dataflows for Depthwise-Conv.

B. Power and Area Evaluation

Here, we evaluate a large design space of dataflows for
GEMM and Depthwise-Conv2D in a 16 × 16 PE array for

869

Authorized licensed use limited to: Zhejiang University. Downloaded on June 13,2024 at 05:37:24 UTC from IEEE Xplore. Restrictions apply.

TABLE III: FPGA Performance Comparison on MM workload

Susy [11] PolySA [4] TensorLib
Device Arria-10 VU9P VU9P

Workload MM Conv MM Conv MM Conv
LUT 40% 35% 49% 49% 68% 73%
DSP 93% 84% 89% 89% 75% 75%

BRAM 32% 30% 89% 71% 51% 73%
MHz 202 220 229 229 263 245
Gop/s 547 551 555 548 673 626

30

40

50

60

70

0.750.775 0.8 0.8250.850.875

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑚𝑚𝑚𝑚2)

𝑝𝑝𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎(𝑚𝑚𝑊𝑊)

(a) GEMM

60
70
80
90

100
110
120

0.75 0.8 0.85
(b) Depthwise-Conv2D

𝑝𝑝𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎(𝑚𝑚𝑊𝑊)

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑚𝑚𝑚𝑚2)

Fig. 6: Power and area result of different dataflow designs

INT16 datatype. We set the target frequency to 320MHz
for ASIC synthesis. Figure 6 gives the area and energy
performance of different dataflow architectures generated by
TensorLib. Each point in the graph refers to one dataflow,
and there are totally 148 points for GEMM and 33 points for
depthwise-Conv2D. Experiments show that dataflow choice
has a larger impact on energy consumption than area. The
energy variation of GEMM range from 35mW to 63mW,
which shows 1.8X difference, while the area has only 1.16X
difference. Compared with other dataflows, dataflow with
two multicast input (MMT, MMS) consumes more energy.
However, reduction tree output dataflow doesn’t cost too much
energy, although they have similar STT-level representation.
Dataflows with stationary tensor also consume more area and
energy because of the control signals for stationary data.

C. Comparison with Prior works
We also compare TensorLib with PolySA [4] and Susy [11].

PolySA and Susy can generate the hardware implementation of
systolic arrays with a polyhedral model or STT. However, their
designs are limited in performance and supported algorithms.
Both Susy and PolySA only support systolic array dataflow,
and they fail to generate hardware for algorithms that don’t fit
well in systolic architecture, such as Depthwise convolution.
We synthesize our implementation with systolic array (KCX-
STS) dataflow on MM and Conv2D workloads with FP32
datatype. The size of PE array in our FPGA implementation
is 10 × 16 and the vectorization degree in each PE is 8. The
result is shown in Table III. Our synthesis result achieves 673
Gop/s throughput and 263 MHz frequency, which obtains 21%
throughput and 15% frequency improvement compared with
the state-of-the-art generators.

Recently, AutoSA [15] extends PolySA with I/O optimiza-
tion and more tensor algorithms. It also uses Autobridge
[7] to improve the frequency by assigning each hardware
module to one particular FPGA slot and minimizing the slot-

crossing cost. Inspired by this, we also manually optimize the
physical placement using Vivado toolchain. This will improve
the frequency of MM design to 328 MHz on VU9P.

VII. CONCLUSION

In this paper, we propose TensorLib, a framework for
generating spatial accelerator for tensor algebra. TensorLib
uses STT to analyze the tensor reuse behavior to generate
the dataflow type and communication direction for each ten-
sor. We build reusable hardware module templates for each
dataflow and Tensorlib automatically select hardware modules
to construct PE structure, PE interconnection, on-chip memory
and controller for complete spatial accelerator. Experiment
results show that TensorLib can generate various accelerators
for tensor applications with different dataflows, and achieve
better performance than state-of-the-art generators on FPGA.

ACKNOWLEDGMENT

This work was supported in part by the Beijing Natu-
ral Science Foundation (No. JQ19014) , Beijing Academy
of Artificial Intelligence (BAAI), and Key-Area Research
and Development Program of Guangdong Province (No.
2019B010155002).

REFERENCES

[1] Jonathan Bachrach et al. Chisel: constructing hardware in a scala
embedded language. In DAC, 2012.

[2] Donald G. Baltus et al. Efficient exploration of nonuniform space-time
transformations for optimal systolic array synthesis. In ASAP 1993.

[3] Yu-Hsin Chen et al. Eyeriss: A spatial architecture for energy-efficient
dataflow for convolutional neural networks. In ISCA 2016.

[4] Jason Cong and Jie Wang. Polysa: polyhedral-based systolic array auto-
compilation. In ICCAD 2018.

[5] Zidong Du et al. Shidiannao: shifting vision processing closer to the
sensor. In ISCA 2015.

[6] Hasan Genc et al. Gemmini: An agile systolic array generator enabling
systematic evaluations of deep-learning architectures. arXiv, 2019.

[7] Licheng Guo et al. Autobridge: Coupling coarse-grained floorplanning
and pipelining for high-frequency HLS design on multi-die fpgas. In
FPGA, 2021.

[8] Liancheng Jia et al. Generating systolic array accelerators with reusable
blocks. IEEE Micro, 2020.

[9] Norman P Jouppi et al. In-datacenter performance analysis of a tensor
processing unit. In ISCA, 2017.

[10] Alex Krizhevsky et al. Imagenet classification with deep convolutional
neural networks. In NIPS 2012.

[11] Yihsiang Lai et al. Susy: A programming model for productive
construction of high-performance systolic arrays on fpgas. In ICCAD
2020.

[12] Yihsiang Lai et al. Heterocl: A multi-paradigm programming infrastruc-
ture for software-defined reconfigurable computing. In FPGA, 2019.

[13] Liqiang Lu et al. Tenet: A framework for modeling tensor dataflow
based on relation-centric notation. In ISCA, 2021.

[14] Nitish Kumar Srivastava et al. T2s-tensor: Productively generating high-
performance spatial hardware for dense tensor computations. In FCCM,
2019.

[15] Jie Wang et al. Autosa: A polyhedral compiler for high-performance
systolic arrays on fpga. In FPGA, 2021.

[16] Xuechao Wei et al. Automated systolic array architecture synthesis for
high throughput CNN inference on fpgas. In DAC, 2017.

[17] Qingcheng Xiao et al. Fcnnlib: An efficient and flexible convolution
algorithm library on fpgas. In DAC, 2020.

[18] Qingcheng Xiao et al. Hasco: Towards agile hardware and software
co-design for tensor computation. In ISCA, 2021.

870

Authorized licensed use limited to: Zhejiang University. Downloaded on June 13,2024 at 05:37:24 UTC from IEEE Xplore. Restrictions apply.

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 3.60 points
 Normalise (advanced option): 'original'

 32

 D:20170330081459
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 3.6000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Up
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryList_V1
 qi2base

