
FCNNLib: An Efficient and Flexible Convolution
Algorithm Library on FPGAs

Qingcheng Xiao, Liqiang Lu, Jiaming Xie, and Yun Liang†
Center for Energy-Efficient Computing and Applications, Department of CS, Peking University

Email: {walkershaw, luliqiang, jmxie, ericlyun}@pku.edu.cn

Abstract—Convolutions can be implemented with different
algorithms, which are diverse in arithmetic complexity, resource
requirement, etc. Multiple algorithms can share the FPGA
resources spatially as well as temporally, introducing either
reconfiguration overhead or resource underutilization. In this
paper, we propose an efficient library FCNNLib to coordinate
multiple convolution algorithms on FPGAs. We develop three
scheduling techniques: spatial, temporal, and hybrid, which
exhibit different trade-offs in latency and throughput. We also
expose a set of interfaces to arm the users. Experiments using
modern CNNs demonstrate FCNNLib achieves up to 1.315X
latency improvement compared with dedicated accelerators and
1.755X energy efficiency improvement compared with cuDNN.

I. INTRODUCTION

With the prevalence of deep convolutional neural networks

(CNNs), there is an increasing demand for accelerating con-

volutions on hardware. Different algorithms for the essen-

tial convolution operation in CNNs have been studied [1].

These algorithms include conventional, general matrix-matrix

multiplication (GEMM), Winograd, and Fast Fourier Trans-

formation (FFT) algorithms. The conventional algorithm is

performed on the original features, while the other three

algorithms transform data into other domains and transform

the results back after the computation. These algorithms are

diverse in arithmetic complexity and dataflow. As a result,

the performance and resource utilization of these algorithms

may vary considerably, depending on the CNN models and

layer parameters. For instance, by using Winograd algorithm in

cuDNN, the number of multiplications in VGGNet [2] can be

reduced to half of the conventional algorithm, leading to about

2.7X inference latency speedup. Due to the importance of

convolution operations, highly optimized convolution libraries

supporting different algorithms such as Arm Compute Library,

MKL-DNN, and cuDNN are commonplace for CPU and GPU

platforms and are widely used in deep learning frameworks,

such as Tensorflow [3], PyTorch [4].

However, such systematic library support of different con-

volution algorithms is not quite here yet for FPGAs, in large

part because FPGAs are highly reconfigurable and difficult to

program. First, programmers do not yet have reliable intuition

about how to choose and implement multiple convolution

algorithms. Multiple algorithms can share the FPGA resources

spatially as well as temporally. Spatial sharing is facilitated

by configuring different portions of FPGAs for different

algorithms; temporal sharing by reconfiguring the FPGAs

†Corresponding Author

to implement different algorithms over time. There exhibit

different trade-offs in latency and throughput. The diversity of

CNN models adds further complications as different models

or different layers of the same models may favour different al-

gorithms and call for different scheduling techniques. Second,

FPGAs programming remains to be a significant challenge

for library developers. To maximize algorithm performance,

programmers need to extensively restructure the source code

to realize the unique hardware features.

In this paper, we propose FCNNLib, an efficient and flexible

convolution algorithm library for CNN inference on FPGAs.

We first propose three scheduling techniques to coordinate

multiple algorithms on FPGAs. Temporal scheduling allows

multiple algorithms to occupy FPGA resources over time.

Spatial scheduling shares resources among multiple algo-

rithms. Hybrid scheduling combines the benefits of spatial

and temporal scheduling. We further improve these scheduling

with the assistance of optimization algorithms to address re-

configuration overhead and hardware under-utilization issues.

Moreover, FCNNLib provides optimized algorithm IPs and

high-level interfaces to facilitate the users to explore different

algorithms and schedulings for a variety of CNN models. We

make the following contributions.

• We propose a hardware library FCNNLib, which provides

efficient and flexible implementations of multiple convolu-

tion algorithms for inference on FPGAs.

• We develop three multi-algorithm scheduling techniques,

including spatial, temporal, and hybrid scheduling.

• We provide optimized IPs and a succinct set of interfaces

to facilitate the users to explore the library.

Experiments using state-of-the-art CNN models on Xilinx

FPGAs demonstrate that designs offered by FCNNLib achieve

up to 1.315X latency improvement and 1.292X DSP efficiency

results compared with dedicated accelerators. Compared with

cuDNN, FCNNLib provides up to 1.755X energy efficiency.

II. BACKGROUND AND MOTIVATION

A. Convolution Algorithm Basics

Convolution in CNNs is to shift a group of 3D filters over

an input tensor and outputs a result tensor. Assume the input

is composed of N feature maps with size H ′ ×W ′, while M
filters all have a K ×K ×N shape. To extract features, each

filter convolves with the input tensor at stride S to obtain

one feature map with size H × W in the output tensor. In

this way, after convolving all filters, M output feature maps

978-1-7281-1085-1/20/$31.00 ©2020 IEEE

Authorized licensed use limited to: Zhejiang University. Downloaded on June 13,2024 at 05:40:20 UTC from IEEE Xplore. Restrictions apply.

EWMM

Fig. 1: Dataflow of different convolution algorithms.

are generated. The following equation details the convolution

operation for each output element:

outm,h,w =

N,K,K∑

n=1,r=1,c=1

inn,h×S+r,w×S+c × filterm,r,c,n

The basic convolution implementation is in line with the above

formula using six nested loops, as shown in Figure 1(a). We

refer to it as conventional algorithm.

Convolutions can be converted to matrix multiplications.

As Figure 1(b) shows, each filter is flattened into a row of

filter matrix with length K × K × N . For the input matrix,

each K × K × N input feature map tile corresponds to an

output element. These tiles are also flattened into columns.

In this way, multiplying a row and a column is equivalent

to the convolution operation for an output element. In this

paper, we refer to this implementation as GEMM algorithm.

Winograd and FFT algorithms are also known as fast algo-

rithms, where they batch the computation of multiple output

tiles by exploiting the structural similarity in an input tile.

More concretely, they first transform the input tile and filter

into Winograd and FFT domains, then perform element-wise

multiplication (EWMM), and finally transform the EWMM

results back to the original output tile. Figure 1(c) illustrates

their dataflows.

B. Convolution Algorithms on FPGAs

Convolution algorithms implemented on FPGAs are diverse

in arithmetic complexity (the number of multiplications), re-

source (memory, logic, and compute resources), and adaptabil-

ity to different workloads [5].

Table I lists convolution layers belonging to ResNet and

DenseNet. We observe that layers favour different convolution

algorithms on FPGAs. Conventional and GEMM achieve con-

sistent performance for convolutions with different workloads.

However, the benefits of Winograd and FFT algorithms fades

as the strides increase. The reason is that Winograd and FFT

algorithms organize data as tiles. When the strides are larger

than 1, they process these convolutions as if their strides

were 1 and screen out the valid outputs after computation.

For instance, the optimal algorithm for one layer (kernel

size 3, stride 1) is Winograd, while the optimal algorithm

for another layer (kernel size 7, stride 2) is conventional.

Using the best algorithm for a single layer provides the ideal

peak performance. However, if we choose one fixed algorithm

TABLE I: Layer preference on convolution algorithms. The

target platform is Xilinx ZC706.

Network
Layer Para.

(kernelSize,
stride)

Oper.
Ratio

Optimal
Algorithm

Performance (GOPS)

Single Algo.
Layer Peak

Single Algo.
Overall

ResNet [6]
(7, 2) 1.0% conven. 213.1 140.6
(3, 1) 50.2% Wino. 548.9 168.0
(1, 1) 48.8% GEMM 232.1 146.5

DenseNet
[7]

(7, 2) 2.3% conven. 213.1 151.2
(3, 1) 39.1% Wino. 548.9 178.6
(1, 1) 58.6% GEMM 232.1 175.5

for the entire model, the overall performance drops sharply

compared to the layer peak performance. For instance, the

overall performance drops more than 3X (548.9 vs 178.6)

compared to layer performance if we use Winograd algorithm

consistently for DenseNet. The drop indicates that using a

single algorithm for all the layers or models will cause great

sacrifice on performance. To this end, we design an efficient

library that provides a variety of algorithms to implement

convolutions on FPGAs.

III. MULTI-ALGORITHM SCHEDULING

One of the essential challenges of developing the library

is the way to schedule multiple convolution algorithms. We

propose three scheduling techniques. Spatial scheduling lets

each algorithm occupy partial on-chip resources and maintains

the same architecture through the whole CNN inference. Tem-
poral scheduling dynamically swaps algorithms at runtime

according to the layer parameters. To enable this scheduling,

we reconfigure FPGAs to switch algorithm implementations.

Hybrid scheduling partitions CNN models into several groups

that occupy the hardware resources in time-sharing fashion.

Within a group, we allocate partial resources to each layer for

implementing its compute unit as in spatial scheduling. We

discuss the scheduling algorithms and trade-offs as below.

A. Spatial Scheduling

In spatial scheduling, we partition hardware resources (re-

source partition) for convolution algorithms. CNN models

have distinct convolution workloads and call for customized

spatial scheduling designs. If we process CNN workloads

layer by layer and assign a convolution workload to only one

convolution algorithm, the compute units of other algorithms

are idle, leading to potential low utilization. Hence, we also

partition a convolution workload (workload partition) and

assign sub-workloads to all employed algorithms. Solving the

Authorized licensed use limited to: Zhejiang University. Downloaded on June 13,2024 at 05:40:20 UTC from IEEE Xplore. Restrictions apply.

resource partition and workload partition problems together

results in enormous design space. Hence, we divide and

conquer spatial scheduling through two stages.
Resource Partition. A resource partition solution results in

an architecture where each algorithm is implemented with its

resource partition. Convolution workloads with various strides

and filter sizes may favour different convolution algorithms.

When each workload in the CNN is processed by its favourite

algorithm compute unit in the architecture, the execution time

represents a reasonable inference latency upper-bound. We

denote this upper-bound as the ceiling inference latency.
Given a target CNN, we explore different resource parti-

tion solutions and fix the architecture with the best resource

partition. We evaluate each partition solution with the ceil-

ing inference latency of the architecture associated with the

partition solution. We use a simulated annealing algorithm to

search the minimal ceiling inference latency, namely the best

partition solution, as shown in Algorithm 1. We first denote

a partition solution in the algorithm. Since FPGA resources

are multi-dimensional, including BRAMs, DSPs, LUTs, etc.,

we denote the hardware resource constraints R as a vector

〈#BRAMs,#DSPs, . . . 〉 where each element represents

the total amount of a type of resources. For convolution

algorithm algo, its resource partitioning Ralgo is also a vector

similar to R. Accordingly, a partition solution PTN ′ can be

represented as a long vector 〈Rconven., RGEMM , RWino.,

RFFT 〉. Then we model an architecture where each algorithm

is implemented within its resource partitioning (line 5). We

calculate the ceiling inference latency of this architecture

based on performance models (line 6). If the ceiling latency

is less than the previous one, we accept the partition solution

PTN ′ as the current solution with a possibility (line 7-9).

A new partition solution is generated based on the current

solution and evaluated (line 4). This process continues until the

ceiling latency converges, or the iteration number exceeds the

given maximum max iter. In the end, Algorithm 1 returns the

best partition solution with which we build a multi-algorithm

accelerator.
Workload Partition. The goal of partitioning convolutions

is to balance the workloads among different algorithms. We

employ feature-based and channel-based partition methods,

as shown in Figure 2(a) and (b). The feature-based method

Algorithm 1: Resource partition algorithm.

Input: CNN model, R, max iter
Output: final PTN

1 iter ← 0, PTN ← initial resource partition solution
2 # PTN is a vector 〈Rconven., RGEMM , RWino., RFFT 〉
3 while iter ≤ max iter do
4 PTN ′ ← generate a new solution based on PTN
5 arch′ ← model an architecture associated with PTN ′

6 ceiling latency′ ← evaluate the ceiling inference
latency of arch′ when processing CNN model

7 if ceiling latency′ < ceiling latency then
8 # ceiling latency is associated with PTN
9 PTN ← PTN ′, with certain possibility

10 final PTN ← the solution with the min ceiling latency
11 return final PTN

Fig. 2: Workflow of the workload partition engine.
divides each output feature map to several tiles, each of which

needs to be produced by an algorithm. Similarly, the channel-

based method divides output channels instead of output feature

maps. Our insight is that within a CNN model, the shallow

layers usually have large feature maps and a few channels,

while the deep layers are on the opposite. The feature-based

method and channel-based method can work in a complemen-

tary manner. There also exist other partition methods, such as

assigning each algorithm with the workload of an entire layer.

However, this method is hard to achieve workload balance and

is not general to traditional sequential CNNs.

The chosen partition method and ratio depend on both work-

load itself and the accelerator generated for spatial scheduling.

Building performance models for all generated accelerators

is impossible. Hence, we develop a machine-learning-based

engine to partition workloads, as shown in Figure 2(c). The

engine consists of a partition generator and an arbiter. Given a

workload, the generator proposes multiple workload partition

strategies (method and ratio combinations). The arbiter selects

a strategy among them according to their relative execution

time. Here we use the relative execution time instead of the

absolute runtime latency, as we only care about the relative

merits of partition strategies proposed by the generator.

Specifically, we implement the arbiter with a multi-layer

perceptron (MLP). Its inputs are the convolution workload

and the partition strategy to be evaluated. It outputs the

relative execution time of the input strategy. The relative time

prediction is enabled by employing a rank loss function [8] as

the training objective function. The loss function obj is:

obj =
∑

a,b

log(1 + e−sign(lata−latb)×(preda−predb))

where a and b are two partition strategies, sign is the Signum

function, lat is the actual execution latency, and pred is the

relative latency predicted by the MLP. We collect the training

data (actual execution latency results) by launching a batch of

randomly partitioned convolutions to the accelerator.

Authorized licensed use limited to: Zhejiang University. Downloaded on June 13,2024 at 05:40:20 UTC from IEEE Xplore. Restrictions apply.

B. Temporal Scheduling

Temporal scheduling enables multiple algorithms based on

the FPGA reconfigurability. Naturally, layer boundaries are

potential reconfiguration points. A reconfiguration benefits the

following layer as the layer can use the optimal algorithm.

However, it also incurs extra overhead, which is the time to

reprogram the FPGA arrays. Taking this trade-off into account,

we develop a dynamic programming algorithm to determine

necessary reconfiguration points. The algorithm insight is that

when implementing a group of layers, we can either use a

single algorithm for all these layers or find an intermediate

point to switch to another algorithm. Thus, we formulate the

recursion formula as follows:

T (i, j) = min{ min
i≤k<j

{T (i, k)+T (k+1, j)+
Treconf

SZbatch
}, Tone(i, j)}

(1)

where T (i, j) represents the minimal latency for layers i to j
after considering reconfiguration. Tone(i, j) is the latency of

using a single convolution algorithm without reconfiguration.

Treconf is the overhead and SZbatch is the input batch

size. FCNNLib amortizes Treconf over batched CNN inputs

to improve throughput. To derive Tone(i, j), we enumerate

processing layers i to j with the four convolution algorithms.

For each algorithm, we first build a compute unit subject to

the platform resource constraints. Then we evaluate the latency

when processing layers i to j with the compute unit according

to algorithm performance models. Among the four algorithms,

the minimal evaluated latency is set as Tone(i, j).

C. Hybrid Scheduling

Hybrid scheduling employs a compute unit for each layer in

the given CNN. The compute unit area, in general, depends on

the layer compute complexity. However, the limited hardware

resources cannot accommodate all the hundreds of layers

in modern complex CNNs like ResNet. Hence, we have

to partition the CNN layers into multiple groups. For each

group, FCNNLib generates an individual architecture on the

target FPGA. The reconfiguration is triggered only when all

workloads in a group are accomplished. Furthermore, layers

within a group are organized as a fine-grained pipeline [9] to

improve overall throughput.

Similar to temporal scheduling, there exists a trade-off

between group number and performance. More groups mean

better algorithm customization and performance optimization

opportunities but incur more reconfiguration overhead at the

same time. To address this trade-off, we use the same dy-

namic programming algorithm used in temporal scheduling,

as Equation 1 shows. However, here Tone(i, j) denotes the

latency of layers from i to j when they are organized as a

group. To obtain Tone(i, j), we develop a branch-and-bound

algorithm as shown in Algorithm 2. The algorithm explores

the architecture for the group composed of layer i to j subject

to hardware resource constraints R, as shown in Algorithm 2.

Starting from the ith layer, we enumerate various algorithms

and parameters for each layer in a depth-first fashion (lines 5-

19). We evaluate the latency and resource usage of each layer

Algorithm 2: Group architecture algorithm.

Input: i, j, R
Output: arch

1 opt arch = INIT(none unit,max latency)
2 current arch = INIT(none unit, no latency)
3 Config(current arch, i, j)
4 return opt arch

5 Function Config(current arch, i, j)
6 if i > j then
7 if current arch.lat < opt arch.lat then
8 opt arch = current arch
9 return

10 foreach convolution algorithm algo do
11 foreach algorithm parameters p for layer i under

hardware resource constraints do
12 res = ResourceModel(algo, p, layer[i])
13 lat = PerfModel(algo, p, layer[i])
14 new arch.lat = Max(current arch.lat, lat)
15 new arch.res = current arch.res+ res
16 if new arch.lat ≥ opt arch.lat then
17 break
18 if MeetConstraints(new arch.res) then
19 Config(new arch, i+ 1, j)

with the performance and resource models (lines 12-13). Since

layers form a fine-grained pipeline, the group latency equals

approximately to the latency of the slowest layer within the

architecture (line 14). Once the jth layer is reached, we update

the current best group latency and architecture if necessary.

Tone(i, j) is the final group latency. Two constraints bound

the search space. For one thing, the total resource usage of

all layers is constrained by the on-chip resource (line 18).

For another, we use the best historical total latency to bound

the following traversal (line 16). If the current group latency

already exceeds the best latency, we skip the following layers

and try another implementation for the current layer.

IV. FCNNLIB IMPLEMENTATION

We develop IPs in high-level synthesis and optimize

them with loop transformations, including tiling, interchange,

pipelining, and unrolling. Directives are properly placed to

maximize algorithm performance. FCNNLib also provides

performance and resource models for each IP.

Listing 1: Example of deploying ResNet with FCNNLib.

1 Step 1: Generate a hardware design on ZC706 FPGA
2 params = getParams(ZC706_resource, ResNet, Spatial)
3 design = configIPs(params)
4 Step 2: Schedule multiple algorithms on FPGAs
5 for wl in ResNet:# wl: workload
6 # partition each workload and assign them to algorithms
7 wl.sub_wls = balanceWorkload(wl, design)
8 foreach input image:
9 for wl in ResNet: # execute the model layer by layer

with balanced sub-workloads
10 wl.output = scheduleAlgo(design, wl.sub_wls,
11 wl.input, Spatial)

We design a set of high-level interfaces for library users.

When using FCNNLib, there are two steps: hardware de-

sign generation and multi-algorithm scheduling. The design

generation step is to generate a CNN accelerator employing

multiple convolution algorithms. We provide getParams in-

terface to determine parameters for each algorithm IP. With

Authorized licensed use limited to: Zhejiang University. Downloaded on June 13,2024 at 05:40:20 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Comparison with Previous FPGA accelerators.

Model ResNet-152 DenseNet-161 DQN

Work [12] [13] FCNNLib spatial FCNNLib spatial
FCNNLib

spatial

Platform ZC706 VU9P ZC706 VU9P ZC706 VU9P ZC706

Frequency (MHz) 125 200 200 200 200 200 200

Precision
16-bit

fixed

16-bit

fixed

16-bit

fixed

16-bit

fixed

16-bit

fixed

16-bit

fixed

16-bit

fixed

conventional � �
GEMM � � � � �

Winograd � � � �
FFT �

Latency (ms) 156.4 17.34 118.9 14.6 68.5 14.4 0.05

Throughput (GOPS) 188.18 1463 190.19 1547.84 209.17 996.6 108.8

DSP Efficiency

(GOPS / DSP)
0.209 0.357 0.270 0.228 0.298 0.229 0.273

Power (W) - - 5.92 32.2 5.92 25.2 5.55

these parameters, users can instantiate and integrate IPs to

form a design via configIPs interface. The scheduling step is

to schedule multiple algorithms on the generated accelerator.

Users feed the design with input data and get inference results

through scheduleAlgo interface. Specific to spatial scheduling,

balanceWorkload interface is provided to balance workloads

among algorithms with the help of the ML-based partition

engine. Moreover, we provide autoScheduling interface, which

automatically explores the algorithm and scheduling combina-

tions and returns a design with the best performance.

Listing 1 is an example of deploying ResNet with spatial

scheduling on the Xilinx ZC706 board. Subject to resource

constraints, getParams returns algorithm parameters leading to

the highest performance. The resource constraints are obtained

by Algorithm 1 in spatial scheduling. FCNNLib generates a

ResNet accelerator after instantiating IPs (line 3). For each

convolution workload in ResNet, balanceWorkload interface

partitions it into sub-workloads specific to the ResNet ac-

celerator (line 7). Last, scheduleAlgo interface launches the

sub-workloads on the accelerator and collects results. As for

temporal and hybrid schedulings, scheduleAlgo would also

reconfigure FPGAs when necessary.

V. EXPERIMENTS

A. Experimental Setup

To demonstrate the efficiency of FCNNLib, we integrate

it into PyTorch [4] and evaluate it with widely used CNNs,

including ResNet, DenseNet, and DQN [10]. We treat fully

connected layers as convolutions with 1 × 1 filters and fuse

activation functions with convolutions. We employ FPGAs

deployed in both embedded and cloud scenarios. Xilinx

ZC706 board is an embedded SoC platform, consisting of one

XC7Z045 FPGA chip, dual ARM Cortex-A9 CPUs, and 1 GB

DDR3 memory. VU9P board is a PCIe-based board that has

been used in AWS F1 instance. For both platforms, we set the

frequency as 200 MHz and use a 16-bit fixed-point data type.

We use Xilinx Vivado SDx(v2018.2) [11] for design synthesis.

B. FPGA Accelerator Comparison

Prior techniques [12], [13] shown in Table II proposed

dedicated optimization for one convolution algorithm. They

solely employ conventional convolution algorithm and focus

on optimizing inference latency with batch size as 1. For

1 8 64

102

103

104

B
at

ch
L

at
en

cy
(m

s)

spatial

temporal

(a) ResNet latency

1 8 64

10−1

100

hybrid

(b) DQN latency

1 8 64
0

100

200

300

T
h

ro
u

g
h

p
u

t
(G

O
P

S
)

(c) ResNet throughput

1 8 64
100

105

110

115

(d) DQN throughput

Fig. 3: Scheduling comparisons on ZC706. X-axis: batch size.

fair comparisons, we use spatial scheduling in FCNNLib to

generate designs targeting low latency.

For less regular modern CNNs, FCNNLib prefers to inte-

grate a high-performance algorithm (Winograd or FFT) with a

more general one such as conventional or GEMM algorithm.

As shown, Winograd and GEMM algorithms are employed for

ResNet and DenseNet, while FFT and GEMM algorithms are

used for DQN. In ResNet and DenseNet, the most common

convolution workloads are 3 × 3 convolutions and 1 × 1
convolutions. Winograd algorithm shows high performance for

the 3×3 convolutions, and GEMM is the optimal algorithm for

1× 1 convolutions. As a result, FCNNLib spatial scheduling

lets Winograd collaborates with GEMM. It determines the

resource partition solutions for ResNet and DenseNet, respec-

tively, and balances the runtime workloads of Winograd and

GEMM algorithm. Overall, for ResNet, FCNNLib achieves

118.9 ms latency and 190.19 GOPS throughput on the ZC706

board, while 14.6 ms latency and 1547.84 GOPS throughput

on VU9P device. Hence, by leveraging multiple algorithms in

ResNet, FCNNLib spatial scheduling achieves up to 1.315X

latency improvement compared with [12], 1.292X DSP effi-

ciency improvement compared with [13]. DQN consists of

three 5 × 5 convolutions with strides being 2 and a final

fully connected layer. FFT algorithm is optimal for the 5× 5
convolutions. FCNNLib spatial scheduling achieves 0.05 ms

latency and meets real-time requirements.

C. Scheduling Comparison

We vary the batch size from 1 to 64 and compare batch

latency and throughput results of the three scheduling in

FCNNLib on ZC706 FPGA, as illustrated in Figure 3.

For ResNet, spatial scheduling generates a design that

is independent of the batch size and processes input im-

ages in sequence. Hence, the batch latency results of spatial

scheduling are linear with the batch size. Temporal scheduling

chooses to perform no reconfiguration to avoid the overhead.

Hence it generates a ResNet design employing only Winograd

algorithm. Its latency results are also linear with the batch

size and are higher than spatial scheduling latency. However,

hybrid scheduling for ResNet always performs reconfiguration

since ResNet consists of hundreds of layers and requires

hundreds of compute units. Such many compute units cannot

Authorized licensed use limited to: Zhejiang University. Downloaded on June 13,2024 at 05:40:20 UTC from IEEE Xplore. Restrictions apply.

TABLE III: Cross-platform comparison.

CNN Platform Device Library Precision
Latency

(ms)

Throughput

(GOPS)

Power

(W)

Energy EFF.

(GOP/J)

DenseNet,

batch size

= 16

FPGA VU9P
FCNNLib

hybrid

16-bit

fixed
198.24 1158.3 26.4 43.88

GPU P100 cuDNN
16-bit

float
108.7 2112.14 84.5 25.00

ResNet,

batch size

= 1

FPGA ZC706
FCNNLib

spatial

16-bit

fixed
118.9 190.19 5.92 32.13

GPU TX1 cuDNN
16-bit

float
118.11 191.44 9.8 19.54

be implemented together on a device. It takes six reconfig-

urations in hybrid scheduling and leads to around 197.4 ms

overhead. As the batch size increases, the overhead is better

amortized, improving the throughput from 80.67 GOPS to

253.2 GOPS, as shown in Figure 3(c). DenseNet shows latency

and throughput results similar to ResNet. In the DQN case,

since DQN consists of only four convolution workloads, all

schedulings generate designs without reconfiguration. Hybrid

scheduling achieves constantly better throughput results since

each layer is processed by a dedicated compute unit with

customized algorithms and parameters.
Depending on a series of factors including model topology,

resources and reconfiguration overhead of the platform, avail-

able batch size, the three scheduling techniques vary in latency

and throughput improvements and require careful selection.

D. Library Comparison
Then we compare our hardware library FCNNLib for FPGA

platforms with the software library cuDNN 9.0 for GPUs.

We let FCNNLib and cuDNN automatically select algorithms

through autoScheduling and cudnnGetConvolutionForwardAl-
gorithm interfaces, respectively. We use 16-bit data types for

FPGAs and GPUs. For DenseNet, we use the VU9P FPGA

board and NVIDIA P100 GPU. For ResNet, we use the

ZC706 FPGA board and NVIDIA Jetson TX1 GPU board.

We list the comparison results in Table III. FCNNLib pro-

vides consistently better energy efficiency in the two cases

compared with cuDNN. FCNNLib chooses hybrid scheduling

in the DenseNet case and achieves 1.755X energy efficiency

compared with cuDNN. Spatial scheduling is chosen for the

ResNet case. FCNNLib provides comparable throughput and

1.644X energy efficiency compared with cuDNN.

VI. RELATED WORK

The implementation of convolution algorithms on FPGAs

has been studied in a number of previous works [14], [15]. [5]

implement Winograd algorithm on FPGAs. [16] has imple-

mented FFT algorithm for both CNN training and infer-

ence. [17] applies GEMM algorithm to CNN acceleration.

As for conventional algorithm, most of the previous FPGA

CNN accelerators are based on it [18]. CHaiDNN [19] is

an HLS based DNN Library implementing conventional al-

gorithm solely. No library has been developed to integrate

all these algorithms and to reduce programming difficulty

when scheduling multiple algorithms like FCNNLib does.

More recent dedicated FPGA accelerators focus on improving

each convolution algorithm by optimizing data movement and

parallelism strategy [20]–[22]. They are orthogonal to our

multi-algorithm scheduling efforts made to FCNNLib.

VII. CONCLUSION

In this paper, we propose a convolution algorithm library

FCNNLib consisting of three multi-algorithm schedulings,

highly optimized algorithm IPs, and programming interfaces.

We explore spatial, temporal, and hybrid schedulings with

the help of scheduling algorithms. We use resource partition

and workload partition for spatial scheduling. For temporal

and hybrid schedulings, we develop dynamic programming

algorithms to determine the schedule timing and method.

FCNNLib also provides highly optimized algorithm IPs and a

series of programming interfaces to ease the FPGA program-

ming hurdle. Experiments using modern CNNs demonstrate

that FCNNLib achieves significant energy efficiency and la-

tency improvement compared with dedicated accelerators.

ACKNOWLEDGMENT

This work is supported by Beijing Natural Science Foun-

dation (No. JQ19014, L172004) and Beijing Academy of

Artificial Intelligence (BAAI).

REFERENCES

[1] A. Lavin and S. Gray, “Fast algorithms for convolutional neural net-
works,” in CVPR, 2016.

[2] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[3] M. Abadi and et al., “Tensorflow: A system for large-scale machine
learning,” in OSDI, 2016.

[4] A. Paszke and et al., “Automatic differentiation in pytorch,” in NIPS-W,
2017.

[5] L. Lu and et al., “Evaluating fast algorithms for convolutional neural
networks on fpgas,” in FCCM, 2017.

[6] K. He and et al., “Deep residual learning for image recognition,” in
CVPR, 2016.

[7] G. Huang and et al., “Densely connected convolutional networks,” in
CVPR, 2017.

[8] C. Burges and et al., “Learning to rank using gradient descent,” in ICML,
2005.

[9] Q. Xiao and et al., “Exploring heterogeneous algorithms for accelerating
deep convolutional neural networks on fpgas,” in DAC, 2017.

[10] V. Mnih and et al., “Human-level control through deep reinforcement
learning,” Nature, vol. 518, 2015.

[11] Xilinx Inc. (2019) Xilinx vivado high-level synthesis. [Online].
Available: https://www.xilinx.com/products/design-tools/vivado.html

[12] S. I. Venieris and C.-S. Bouganis, “fpgaconvnet: Mapping regular and
irregular convolutional neural networks on fpgas,” IEEE Trans. Neural
Netw. Learn. Syst., no. 99, 2018.

[13] X. Wei and et al., “Tgpa: Tile-grained pipeline architecture for low
latency cnn inference,” in ICCAD, 2018.

[14] Q. Xiao and Y. Liang, “Fune: An fpga tuning framework for cnn
acceleration,” IEEE Design & Test, 2019.

[15] Q. Xiao and et al., “Zac: Towards automatic optimization and deploy-
ment of quantized deep neural networks on embedded devices,” in
ICCAD, 2019.

[16] C. Zhang and V. Prasanna, “Frequency domain acceleration of con-
volutional neural networks on CPU-FPGA shared memory system,” in
FPGA, 2017.

[17] N. Suda and et al., “Throughput-optimized opencl-based fpga accelerator
for large-scale convolutional neural networks,” in FPGA, 2016.

[18] M. Alwani and et al., “Fused-layer cnn accelerators,” in MICRO, 2016.
[19] Xilinx Inc. (2019) Xilinx deep neural network library. [Online].

Available: https://github.com/Xilinx/CHaiDNN
[20] A. Azizimazreah and L. Chen, “Shortcut mining: Exploiting cross-layer

shortcut reuse in dcnn accelerators,” in HPCA, 2019.
[21] Y. Ma and et al., “End-to-end scalable fpga accelerator for deep residual

networks,” in ISCAS, 2017.
[22] S. Yin and et al., “A high throughput acceleration for hybrid neural

networks with efficient resource management on FPGA,” TCAD, 2018.

Authorized licensed use limited to: Zhejiang University. Downloaded on June 13,2024 at 05:40:20 UTC from IEEE Xplore. Restrictions apply.

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 3.60 points
 Normalise (advanced option): 'original'

 32

 D:20170330081459
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 3.6000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Up
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryList_V1
 qi2base

